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Table S1. Active space (AS) orbitals for the XMS-CASPT2/cc-pVDZ calculations: (a.) the 

occupied, and (b.) the unoccupied orbitals in the closed-shell ground-state configuration. 
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Table S2. Active space (AS) orbitals for the OM2/MRCI calculations: (a.) the occupied, and 

(b.) the unoccupied orbitals in the closed-shell ground-state configuration. 
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Table S3. Relative energies (in eV, corrected for the zero-point vibration energy (ZPE)) and 

optimized structures of the chemically relevant 8-oxo-hypoxanthine tautomers. For clarity, 

only the most stable rotamers have been presented. The geometries and  ZPEs  were calculated 

at the DFT(B2PLYP)/Def2-TZVP level, with energies recalculated at the CCSD(T)/Def2-

TZVP level of theory on the DFT-optimize structures. 
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Table S4. The leading orbital contributions to lowest-energy electronic excitations at the (a) 

ADC(2)/aug-cc-pVDZ, (b) OM2/MRCI, (c) ADC(2)/aug-cc-pVTZ, and (d) XMS-CASPT2/ 

cc-pVDZ levels of theory for the most stable di-keto form.  

 

 

(a) ADC(2)/aug-cc-pVDZ 

 

S0 → S1 

 
S0 → S2 

 

S0 → S3 

 
 

 
(b) OM2/MRCI 

 

S0 → S1 

 

S0 → S2 

 
S0 → S3 
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(c) ADC(2)/aug-cc-pVTZ 

 

S0 → S1 

 
S0 → S2 

 
S0 → S3 

 
 

 

 

(d) XMS-CASPT2/cc-pVDZ 

 

S0 → S1 

 

S0 → S2 

 
S0 → S3 
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Table S5. Absorption spectrum of the lowest-energy enol form, calculated at the ADC(2)/aug-

cc-pVDZ and ADC(2)/aug-cc-pVTZ levels of theory at the MP2/aug-cc-pVDZ geometry, with 

the leading orbital excitation contributions calculated at the ADC(2)/aug-cc-pVDZ level.  

 

 ADC(2)/aug-cc-pVDZ ADC(2)/aug-cc-pVTZ 

 E  /  eV f. osc. Character E  /  eV f. osc. Character 

S1 4.84 0.1298 ππ* 4.81 0.1295 ππ* 

S2 5.28 0.1224 ππ* 5.26 0.1209 ππ* 

S3 5.31 0.0003 πσ* 5.49 0.0013 nπ* 

S4 5.53 0.0009 nπ* 5.51 0.0004 πσ* 

S5 5.60 0.0036 nπ* 5.55 0.0029 nπ* 

S6 6.03 0.0009 πσ* 6.25 0.0008 πσ* 
 

 

S0 → S1 

 

S0 → S2 

 

S0 → S3 

 
S0 → S4 

 

S0 → S5 

 
S0 → S6 
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Table S6. Absorption spectrum of the lowest-energy keto form, calculated at the ADC(2)/aug-

cc-pVDZ and ADC(2)/aug-cc-pVTZ levels of theory at the MP2/aug-cc-pVDZ geometry. The 

leading orbital excitation contributions can be found in Table S3. 

 ADC(2)/aug-cc-pVDZ ADC(2)/aug-cc-pVTZ 

 E  /  eV f. osc. Character E  /  eV f. osc. Character 

S1 4.17 0.0935 ππ* 4.15 0.0932 ππ* 

S2 4.93 0.0003 πσ* 4.92 0.2230 ππ* 

S3 4.95 0.2230 ππ* 4.97 0.0000 nπ* 

S4 5.00 0.0000 nπ* 5.13 0.0002 πσ* 

S5 5.29 0.0005 πσ* 5.50 0.0006 πσ* 

S6 5.77 0.0000 πσ* 5.54 0.0002 nπ* 
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Table S7. Optimized structures of MECP-RP and MECP-CN, determined at OM2/MRCI, 

MP2|ADC(2)/aug-cc-pVDZ, and XMS-CASPT2 levels of theory, with marked energies (in 

blue) and the most characteristic structural parameters: dihedral angles C6N1C2N3 (black), 

C6N1C2H (green), and C6N1 distance (yellow). 

 MECP-RP MECP-CN 

OM2/MRCI 

  

MP2|ADC(2)/ 

aug-cc-pVDZ 

  

XMS-

CASPT2/ 

cc-pVDZ 
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Figure S1. Single-point energy check along the adiabatic ring-puckering relaxation path 

obtained for state S1 at the OM2/MRCI level of theory. The black circles, red diamonds, and 

blue squares correspond to results of the OM2/MRCI, ADC(2)/cc-pVDZ, and SF-ADC(2)/cc-

pVDZ calculations, respectively, while full/empty symbols denote energy of S1/S0 states. 
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Figure S2. Linear-interpolation path between Franck-Condon and RP-MECP points for the 

keto-tautomer calculated at (a.) ADC(2)/aug-cc-pVDZ and (b.) OM2/MRCI levels of theory. 

The interpolation was performed in the internal-degree-of-freedom representation.  
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Figure S3. NAMD states population evolution obtained at the OM2/MRCI level of theory: S0 

– black, S1 – red line, respectively. The inset focuses on the initial 200 fs of the relaxation 

dynamics.   
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Figure S4. Evolution of the C6N1C2N3 and C6N1 coordinates along typical NAMD trajectories 

belonging to set I – closed forms produced with pure ring deformation (a.), set II a. – closed 

forms produced with ring deformation followed by the reversible C-N bond cleavage (b.), and 

set II b. – the final open isomers (c). The vertical lines mark the moment of the S1 → S0 

hopping; results calculated at the OM2/MRCI level of theory. 
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Figure S5. Nonadiabatic coupling (NAC) evolution for trajectories presented in Fig. S3, 

representing sets I, II a., and II b. The vertical dotted lines mark the moment of S1→S0 hopping.  
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Figure S6. The open-ring isomer conversion dynamics to the closed-ring photoproduct with 

an exponential decay fit. The open-ring form population is quantified with deviation of the 

mean C-N bond length from its equilibrium value.  
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Figure S7. (a.) NAMD states population evolution: S0 – black, S1 – red line, respectively; (b.) 

Correlation graph showing distribution of starting (full circles) and hopping (empty circles) 

points with respect to the C1N3–C1N3C5N7 coordinates; results calculated at the ADC(2)/aug-

cc-pVDZ level of theory. 

 


