## Electronic Supporting Information for:

# Ultrafast nonradiative deactivation of photoexcited 8-oxo-hypoxanthine: a nonadiabatic molecular dynamics study

Joanna Jankowska<sup>1\*</sup> and Robert W. Góra<sup>2\*</sup>

<sup>1</sup> Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland

<sup>2</sup> Department of Physical and Quantum Chemistry, Wroclaw University of Science and

Technology, 50-370 Wrocław, Poland

| НОМО | HOMO-1 | HOMO-2 | HOMO-3 |
|------|--------|--------|--------|
|      |        |        |        |
| LUMO | LUMO+1 | LUMO+2 | LUMO+3 |

**Table S1.** Active space (AS) orbitals for the XMS-CASPT2/cc-pVDZ calculations: (a.) theoccupied, and (b.) the unoccupied orbitals in the closed-shell ground-state configuration.

**Table S2.** Active space (AS) orbitals for the OM2/MRCI calculations: (a.) the occupied, and (b.) the unoccupied orbitals in the closed-shell ground-state configuration.



b.

|        | LUIVIO+1 | LUIVIU+2 | LUIVIU+3 |
|--------|----------|----------|----------|
|        |          |          |          |
| LUMO+4 | LUMO+5   | LUMO+6   | LUMO+7   |

**Table S3.** Relative energies (in eV, corrected for the zero-point vibration energy (ZPE)) and optimized structures of the chemically relevant 8-oxo-hypoxanthine tautomers. For clarity, only the most stable rotamers have been presented. The geometries and ZPEs were calculated at the DFT(B2PLYP)/Def2-TZVP level, with energies recalculated at the CCSD(T)/Def2-TZVP level of theory on the DFT-optimize structures.

| nh1-nh7-nh9 (keto,           | oh6-nh7-nh9 (enol,           | nh1-nh7-oh8 ( <b>0.432</b> ) | nh1-oh8-nh9 ( <b>0.483</b> ) |
|------------------------------|------------------------------|------------------------------|------------------------------|
| 0.000)                       | 0.068)                       | ł                            | 4<br>C                       |
| oh6-oh8-nh9 ( <b>0.555</b> ) | oh6-nh7-oh8 ( <b>0.624</b> ) | nh3-nh7-nh9 ( <b>0.724</b> ) | nh3-nh7-oh8 ( <b>0.811</b> ) |
| Ч.                           | ł                            | ÷                            |                              |
| nh3-oh6-oh8 ( <b>0.938</b> ) | nh1-oh6-oh8 (1.134)          | nh3-oh8-nh9 (1.327)          | nh1-ch2-nh3 (1.721)          |
| ÷                            | r di                         | ÷                            |                              |

**Table S4.** The leading orbital contributions to lowest-energy electronic excitations at the (a) ADC(2)/aug-cc-pVDZ, (b) OM2/MRCI, (c) ADC(2)/aug-cc-pVTZ, and (d) XMS-CASPT2/ cc-pVDZ levels of theory for the most stable di-keto form.



#### (a) ADC(2)/aug-cc-pVDZ

(b) OM2/MRCI



### (c) ADC(2)/aug-cc-pVTZ



### (d) XMS-CASPT2/cc-pVDZ



**Table S5.** Absorption spectrum of the lowest-energy enol form, calculated at the ADC(2)/aug-cc-pVDZ and ADC(2)/aug-cc-pVTZ levels of theory at the MP2/aug-cc-pVDZ geometry, with the leading orbital excitation contributions calculated at the ADC(2)/aug-cc-pVDZ level.

|         | ADC(2)/aug-cc-pVDZ |         |               | ADC(2)/aug-cc-pVTZ |         |               |
|---------|--------------------|---------|---------------|--------------------|---------|---------------|
|         | E / eV             | f. osc. | Character     | E / eV             | f. osc. | Character     |
| $S_{I}$ | 4.84               | 0.1298  | $\pi\pi^*$    | 4.81               | 0.1295  | $\pi\pi^*$    |
| $S_2$   | 5.28               | 0.1224  | $\pi\pi^*$    | 5.26               | 0.1209  | $\pi\pi^*$    |
| $S_3$   | 5.31               | 0.0003  | $\pi\sigma^*$ | 5.49               | 0.0013  | nπ*           |
| $S_4$   | 5.53               | 0.0009  | nπ*           | 5.51               | 0.0004  | $\pi\sigma^*$ |
| $S_5$   | 5.60               | 0.0036  | nπ*           | 5.55               | 0.0029  | nπ*           |
| $S_6$   | 6.03               | 0.0009  | $\pi\sigma^*$ | 6.25               | 0.0008  | $\pi\sigma^*$ |



**Table S6.** Absorption spectrum of the lowest-energy keto form, calculated at the ADC(2)/aug-cc-pVDZ and ADC(2)/aug-cc-pVTZ levels of theory at the MP2/aug-cc-pVDZ geometry. The leading orbital excitation contributions can be found in Table S3.

|         | ADC(2)/aug-cc-pVDZ |         |               | ADC(2)/aug-cc-pVTZ |         |               |
|---------|--------------------|---------|---------------|--------------------|---------|---------------|
|         | E / eV             | f. osc. | Character     | E / eV             | f. osc. | Character     |
| $S_{I}$ | 4.17               | 0.0935  | $\pi\pi^*$    | 4.15               | 0.0932  | $\pi\pi^*$    |
| $S_2$   | 4.93               | 0.0003  | $\pi\sigma^*$ | 4.92               | 0.2230  | $\pi\pi^*$    |
| $S_3$   | 4.95               | 0.2230  | $\pi\pi^*$    | 4.97               | 0.0000  | nπ*           |
| $S_4$   | 5.00               | 0.0000  | nπ*           | 5.13               | 0.0002  | $\pi\sigma^*$ |
| $S_5$   | 5.29               | 0.0005  | $\pi\sigma^*$ | 5.50               | 0.0006  | $\pi\sigma^*$ |
| $S_6$   | 5.77               | 0.0000  | $\pi\sigma^*$ | 5.54               | 0.0002  | nπ*           |

**Table S7.** Optimized structures of MECP-RP and MECP-CN, determined at OM2/MRCI, MP2|ADC(2)/aug-cc-pVDZ, and XMS-CASPT2 levels of theory, with marked energies (in blue) and the most characteristic structural parameters: dihedral angles  $C_6N_1C_2N_3$  (black),  $C_6N_1C_2H$  (green), and  $C_6N_1$  distance (yellow).





**Figure S1.** Single-point energy check along the adiabatic ring-puckering relaxation path obtained for state  $S_1$  at the OM2/MRCI level of theory. The black circles, red diamonds, and blue squares correspond to results of the OM2/MRCI, ADC(2)/cc-pVDZ, and SF-ADC(2)/cc-pVDZ calculations, respectively, while full/empty symbols denote energy of  $S_1/S_0$  states.



**Figure S2.** Linear-interpolation path between Franck-Condon and RP-MECP points for the keto-tautomer calculated at (**a.**) ADC(2)/aug-cc-pVDZ and (**b.**) OM2/MRCI levels of theory. The interpolation was performed in the internal-degree-of-freedom representation.



Figure S3. NAMD states population evolution obtained at the OM2/MRCI level of theory:  $S_0$  – black,  $S_1$  – red line, respectively. The inset focuses on the initial 200 fs of the relaxation dynamics.



**Figure S4.** Evolution of the C<sub>6</sub>N<sub>1</sub>C<sub>2</sub>N<sub>3</sub> and C<sub>6</sub>N<sub>1</sub> coordinates along typical NAMD trajectories belonging to set I – closed forms produced with pure ring deformation (a.), set II a. – closed forms produced with ring deformation followed by the reversible C-N bond cleavage (b.), and set II b. – the final open isomers (c). The vertical lines mark the moment of the S<sub>1</sub>  $\rightarrow$  S<sub>0</sub> hopping; results calculated at the OM2/MRCI level of theory.



**Figure S5.** Nonadiabatic coupling (NAC) evolution for trajectories presented in Fig. S3, representing sets I, II a., and II b. The vertical dotted lines mark the moment of  $S_1 \rightarrow S_0$  hopping.



**Figure S6.** The open-ring isomer conversion dynamics to the closed-ring photoproduct with an exponential decay fit. The open-ring form population is quantified with deviation of the mean C-N bond length from its equilibrium value.



Figure S7. (a.) NAMD states population evolution:  $S_0$  – black,  $S_1$  – red line, respectively; (b.) Correlation graph showing distribution of starting (full circles) and hopping (empty circles) points with respect to the  $C_1N_3$ – $C_1N_3C_5N_7$  coordinates; results calculated at the ADC(2)/augcc-pVDZ level of theory.