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General remarks 
 

Hessian Calculations  
Computational cost and convergence of numerical methods are some of practical challenges in 
computational application of quantum chemical approaches. Identification of resource (time, CPU 
hours) consuming steps in the calculations and strategies to avoid them at little loss of accuracy is a 
promising approach to reduce the time and computer cost of quantum chemical calculations. We 
identify one such avenue to significantly reduce the cost of pKa calculations within GFN2-xTB and DFT 
calculations. Estimation of pKa requires calculation of Gibbs free energy. For both GFN2-xTB and DFT 
calculations Gibbs free energy can be estimated by computing the hessian matrix at the optimized 
geometry. Calculation of hessian is computationally intensive. An analysis of 107 DFT calculations with 
various sizes ( N = 11 – 115 atoms) at pbe1pbe/def2-SVP level revealed that the time taken for hessian 
calculation grows approximately as N3 and for N > 50 hessian calculations can consume more than 35% 
and for N > 80, > 50% of the total calculation time Figure-SI- 1 and Figure-SI- 2.i 

  

Figure-SI- 1: fraction of total computing time for geometry optimization and hessian calculations vs number of atoms (N). 

Therefore, avoiding hessian calculations can help reduce the computational cost and complexity.  

 

  

Figure-SI- 2: time taken for hessian calculation vs N. 

We therefore use electronic energy to compute the PA (≈ 𝐸𝐸(𝐴𝐴) − 𝐸𝐸(𝐴𝐴𝐴𝐴)) in our ML models. 
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Correlation between E(A) – E(AH) and G(A) – G(AH) 

  

Figure-SI- 3: Observed linear correlation between the Gibbs free energy of deprotonation versus the change in electronic free 
energy upon deprotonation in GFN2-xTB calculations. The outlier is complex 159 ([HFe(Py2Tstacn)]+2.  

 

Figure-SI- 4. Observed linear correlation between the Gibbs free energy of deprotonation versus the change in electronic free 
energy upon deprotonation in DFT calculations. 
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GFN2-xTB Calculations 

 

Figure-SI- 5. Experimental pKa vs PA computed as G(A) – G(AH). 

  

Figure-SI- 6: experimental pKa vs GFN2-xTB computed solvated PA (electronic energy) in acetonitrile. 

 

Figure-SI- 7: experimental pKa vs GFN2-xTB computed solvated PA (electronic energy) in THF. 

 



S6 
 

  

Figure-SI- 8: experimental pKa vs GFN2-xTB computed solvated PA (electronic energy) in dichloromethane. 

 

  

Figure-SI- 9: experimental pKa vs GFN2-xTB computed solvated PA (electronic energy) in dichloroethane. 
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DFT//GFN2-xTB Calculations 

  

Figure-SI- 10: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy). 

 

  

Figure-SI- 11: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy), with the outliers removed. 

 

  

Figure-SI- 12: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy) in acetonitrile. 
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Figure-SI- 13: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy) in THF. 

 

  

Figure-SI- 14: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy) in dichloromethane. 

 

 

Figure-SI- 15: experimental pKa vs DFT//GFN2-xTB computed solvated PA (electronic energy) in dichloroethane. 
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DFT Calculations 

  

Figure-SI- 16: experimental pKa vs DFT computed solvated PA (electronic energy). 

 

 

Figure-SI- 17: experimental pKa vs DFT computed solvated PA (electronic energy) in acetonitrile. 

 

 

Figure-SI- 18: experimental pKa vs DFT computed solvated PA (electronic energy) in THF. 
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Figure-SI- 19: experimental pKa vs DFT computed solvated PA (electronic energy) in dichloromethane. 

 

 

Figure-SI- 20: experimental pKa vs DFT computed solvated PA (electronic energy) in dichloroethane. 
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Structure overlay plots of 75, 78 and 102 

 

Figure-SI- 21: Structure overlay plots for conjugate base and acid forms of dicarbonyl complexes 75, 78 and 102. The CCO-M-
CCO angle matches well with DFT predicted geometry in the acid form of complexes 75 and 78 while it is underestimated in 
the base form. This leads to ∆PA = 10.0 and +10.3 kcal mol-1. The CCO-M-CCO angle is underestimated both in the acid and 
base forms of complex 102 leading to higher than average energy differences of the acid and base forms. The acid form also 
has a distorted Cp ring which attributes a ∆PA = -10.5 kcal mol-1 
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Structure plots of outlier complexes in Figure-SI-10 

 

Figure-SI- 22. Structure plots of acid form of complexes that are outliers in the plot between exp. pKa and DFT//GFN2-xTB 
computed PA in Figure-SI- 10. 

Comparison of gas phase and solvated optimized geometries  

 

Figure-SI- 23. DFT optimized structure plots of selected complexes. Geometries optimized in the presence of solvation 
potential (SMD) are shown in blue while the geometries optimized in the gas phase are shown in red. The gas phase and 
solvated geometries overlap well showing that the impact of solvation potential on the optimized geometries is minimal.  
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Ensemble of ML models learnt by AutoML 

 

Figure-SI- 24. Snapshot of the output of PipelineProfilerii on the ensemble of ML models learnt by the Auto-sklearn method. 

 

i This also depends on several factors such as the optimizer used, initial geometry etc.  
ii arXiv:2005.00160v2 

                                                           

https://arxiv.org/abs/2005.00160v2
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