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S1 Reduction of SN to SN−1 symmetry for fermionic particles

As explained in the main text, the Hamiltonian expressed in internal coordinates does not explicitly

include the symmetry group SN . Yet, the solution must belong to the SN representation as the

original Hamiltonian features this symmetry. In order to identify the specific SN representation,

the symmetry of the solutions is tested a posteriori.

An acceptable solution for the case of spinless bosons must belong to the {N} Young diagram.

By removing the coordinate of the particle labelled as N, this solution might only correspond

to the {N− 1} diagram of the SN−1 group as it must obviously be symmetric with respect to any

permutation of first N−1 PNs. However, the solution that transforms as the {N−1} representation

of the SN−1 symmetry group may correspond not only to the {N} but also to the {N−1,1} diagram

of SN . To verify that we have calculated a good {N} solution, a ‘symmetry factor Q’ is evaluated

as:

Q≡ 〈Ψ(1↔ N)|Ψ〉.

Then, from general theory of the SN group representations,1 it can be shown that the factor Q for

the solution corresponding to {N} ({N−1,1}) is equal to +1 (− 1
N−1 ). Therefore, the factor Q can

be used to select the correct solutions. We note that it involves a modification of the DVR basis

grid, and thus may also serve as a numerical indicator of its quality itself.

A similar approach can be used for the fermionic case. The total wave function of N fermions with

a total spin S and its projection M can be written as1

Ψi =
1√

f

f

∑
j=1

X(N,S,M; f )ΦS
ji

where the index i labels the solution, and the (normalized) spin functions X(N,S,M; f ) transform

according to the {N
2 + S, N

2 − S} representation of the SN group, f being the dimension of this

representation. For example, these can be branching diagram functions arranged to the last letter

sequence. The (normalized) spatial wave functions ΦS
ji then transform according to a conjugate
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representation. As the structure of this representation depends on S, these functions also depend on

S as indicated by superscript, but are independent on M. The conjugate representation is obtained

by transposing the Young tableau of the spin part, and including the permutation parity phase into

the representation matrices.1 Then, the (spin-free) Hamiltonian evaluated over the functions ΦS
ji

becomes proportional to the unit matrix, with the diagonal value as the corresponding energy Ei.

For the Hamiltonian expressed in internal coordinates, we can only explicitly consider the SN−1

symmetry operation so that the SN representation has to be reduced to the corresponding SN−1 ones.

Different SN−1 representations may correspond to a given spatial conjugate representation of SN ,

as the reduction is achieved by simple removal of the Young tableau cell containing the coordinate

of the particle labelled as N. The Hamiltonian matrix over all corresponding functions will be the

same (i.e., having the same energy value Ei on the diagonal). To identify to which SN representation

our SN−1 solutions belong, the matrix of Q factors must be evaluated. A general approach can be

implemented using the above expressions but, for illustrative purposes, we next will consider the

specific cases with N = 2, 3, and 4.

S1.1 N = 2

As described in the main text, the full S2 permutation symmetry is explicitly incorporated for the

case with N = 2. For fermionic particles, it implies that, for symmetric spin wave-functions (triplet,

the {2} representation of S2), the spatial part must be anti-symmetric while, for anti-symmetric

spin-function (singlet, {1,1} representation), the spatial part must be symmetric. For N = 2, it is

thus not necessary to calculate the symmetry factors Q.

S1.2 N = 3

For the case of N = 3 fermionic particles, the spin S can adopt the values of 3/2 and 1/2. For S =

3/2, the spin part transforms as the {3} representation of the S3 group (i.e., it is fully symmetric).

It follows that the spatial part transforms as {1,1,1} (i.e., it is fully anti-symmetric). Clearly, by

removing the coordinate of the 3rd particle, the corresponding representation of S2 is {1,1}. This
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representation, apart from {1,1,1} of S3, can also be obtained by reducing the {2,1} representation

of the S3 group. The representation {1,1} is one-dimensional and, by calculating the Q factor, it is

easy to distinguish between the two solutions. The solution corresponding to {1,1,1} and {2,1}

of the S3 group have Q =−1 and Q = 1/2, respectively. In order to obtain the correct S = 3/2 spin

solution, the {1,1} symmetry of the S2 group has to be imposed, as followed by a test with the Q

factor evaluation. Once again, the Q factor will serve as the test for the grid quality.

For S = 1/2, the spin part transforms according to {2,1} representation. Therefore, the spatial

part transforms according to {2,1} (conjugate) as well. Reducing to S2, it can be obtained from ei-

ther {1,1} or {2} representations. We note that the {2,1} representation of S3 is two-dimensional.

Both corresponding {1,1} and {2} representations of S2 themselves are non-degenerate. It is easy

to obtain the Q factors corresponding to the {2,1} solution: it is Q = 1/2 for {1,1} and Q =−1/2

for {2}. The energies of these solution belonging to different S2 representations, should be de-

generate. This degeneracy, together with Q values, again constitutes a good test of the quality of

the grid. For {2} representation of S2 we may also have the Q factor of +1 that corresponds to

“spurious” (bosonic-like) solution as discussed above for bosons.

S1.3 N = 4

For the case of N = 4 fermionic particles, the spin S can adopt the values of 0, 1 and 2. For S = 2,

the spatial part transforms as a fully anti-symmetric function (i.e., as the {1,1,1,1} representation

of the S4 group). This is a one-component function obtained from the {1,1,1} representation of

the S3 group, which is also non-degenerate. The Q factor must be−1 for the {1,1,1} solution with

S = 2. This result is rather obvious and similar to the case of S = 3/2 for N = 3.

For S = 1, the spin function transforms as the {3,1} representation. Accordingly, the spatial con-

tribution must transform as the conjugate {2,1,1} of the S4 symmetry group. Both representations

are three-dimensional so that the full (spin and spatial) wave-function contains three terms. For

the spatial wave-function, one term arises from the {1,1,1} representation of the S3 group which

is non-degenerate, with Q = 1/3. To illustrate the previous general considerations, let us consider

S4



this case in more detail. The three Young tableau corresponding to the {2,1,1} diagram, as well

as the conjugate representation, are written as follows:

1 4

2

3

1 3

2

4

1 2

3

4

After removing the coordinate of the 4-th particle from the symmetry operations, it is clear that

the first function belongs to the {1,1,1} representation, while the other two components form the

basis of the two-dimensional {2,1} representation. If the representation is not one-dimensional,

the numerical solver can produce arbitrary linear combinations of degenerate solutions. Instead of

a single Q factor, we have to calculate the sum over the degenerate components (i.e., the trace of the

Q matrix over the degenerate states). Once again, from general representation theory, it follows that

the trace of Q factors over {2,1} representation (last two tableau’s above) should be Q = −4/3

for the solution corresponding to S = 1. We stress again that the energies of these two {2,1}

S3 symmetry solutions should be equal and degenerate with the corresponding {1,1,1} solution

(having Q = 1/3). Once more, the occurrence of this degeneracy together with the determination

of accurate Q values (i.e., differing very little from the ‘nominal values’) are good tests for the grid

quality.

Finally, for S = 0, both the spin and spatial WF contributions transform as the {2,2} represen-

tation. This is a two-dimensional representation. Its two spatial components come from the {2,1}

symmetry of the S3 group, with a trace of the Q factor equal to zero.

S2 Details of the ab initio-derived pairwise potential model

The details of the ab initio-derived potential model used in this work for the He–SWCNT(11,4)

interaction have already been provided in Ref. 2. As mentioned in the main text, our model uses

different analytical forms for the dispersionless and dispersion energy contributions. For conve-

nience, we outline here the most important details.
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The interaction between a given pseudo-nucleus (referred to as PN) and the SWCNT tube ac-

counts for the typical exponential growth of the dominant dispersionless contribution, the exchange-

repulsion, but also including a Gaussian-type ‘cushion’ to characterize weakly attractive tails stem-

ming from other dispersionless terms as follows

Edisp−less
int ({RA−C}) = ∑

C
[1+ γR(1−

6
5

cos2
θC)]

×A e(−α ;RA−C−β R2
A−C), RA−C < Rc.

Rc is a cut-off distance, RA−C stands for the distance between the adsorbate and one carbon atom

of the SWCNT nanotube, and θC is the angle between the radial vector going from the nanotube

center to one carbon atom and the vector RA−C pointing from the adsorbate to the same C atom.

The dimensionless factor γA in the first term accounts for the anisotropy of the C−C bonds. The

sum in the second term runs over all carbon atoms of the SWCNT(11,4) nanotube. Aimed to model

the dispersion contribution, we apply the typical C6/C8 expansion with the damping functions of

Tang and Toennies fn (n = 6,8)3

Edisp
int ({RA−C}) =−∑

C
[1+ γA(1−

3
2

cos2
θC)]

× ∑
n=6,8

√
CA

n CC
n

Rn
A−C

fn

(√
βAβCRAC

)
,

where γR is also a dimensionless anisotropy parameter. The explicit form of the damping functions

is

fi(x) = 1−
i

∑
j=0

xi

i!
exp(−x)

The fitting parameters have been provided in the Supporting Information of Ref. 4. These model

parameters were derived by fitting the dispersionless and dispersion contributions, as calculated

using the Density Funcional Theory (DFT)-Based Symmetry Adapted Perturbation Theory5–7 ap-

proach.

We have used the same ab initio-derived potential model for the H2–SWCNT(11,4) interaction,
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with the details having been provided in Ref. 8 (see section S2 of the corresponding Supporting

Information8). In order to employ these potentials within the DVR approach, they were fit to the

polynomials of the order six of ρ:

V1(ρ) =
lmax

∑
l=0

plρ
l (S1)

with lmax = 6.

The parameters of the fit are provided in Table S1. The values bearing machine precision are

available from the authors upon request.

Table S1: Parameters of the potential fit pl for the PN-SWCNT(11,4) interaction, see Eq.(S1). pl
are in cm−1 and ρ in a0.

l 0 1 2 3 4 5 6
D2, H2 −394.920 −86.761 −4.658 0.478 0.270 0.497×10−1 −0.258×10−2

4He, 3He −127.510 −14.750 −17.277 6.438 −1.014 0.936×10−1 −0.148×10−2

S3 One-dimensional cuts of the one-particle densities for the

ground states of the PNN-SWCNT(11,4) complexs (PN=3He,

4He, para-H2)

To complete the presentation of 2D density plots in the main text, Figures S1-S3 shows 1D den-

sity plots for the ground states of the PNN-SWCNT(11,4) complexes (PN=3He, 4He, para-H2),

including comparison with the ortho-D2 counterpart. The 1D density is defined as the square of

the corresponding WF integrated over all but one coordinate. For completeness, we provide also

the density in the coordinates ρ .
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Figure S1: Plot of 1D densities for the ground state of PN2 ⊂SWCNT(11,4) complexes. Left to
right: PN=3He, 4He, para-H2, ortho-D2. (a) coordinate ρ; (b) coordinate t; (c) coordinate χ .
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Figure S2: Plot of 1D densities for the ground state of PN3 ⊂SWCNT(11,4) complexes. Left to
right: PN=3He, 4He, para-H2. (a) coordinate ρ; (b) coordinate t; (c) coordinate χ .
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Figure S3: Plot of 1D densities for the ground state of PN4 ⊂SWCNT(11,4) complexes. Left to
right: PN=4He, para-H2, ortho-D2. (a) coordinate ρ; (b) coordinate t; (c) coordinate χ .
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