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Methods

Semi-Classical Spectra Simulation

Absorption spectra are simulated with a semi-classical method proposed by Barbatti et al.1,2 On the

basis of ground-state ensembles composed of N structures Rk, we can calculate photoabsorption cross

section with time-dependent perturbation theory at the first-order level

σ (E) =
πe2

2mcε0
∑
l ̸=i

[
1
N

N

∑
k

fil (Rk)g(E −∆Eil (Rk) ,δ )

]
(1)

where ε0 is vacuum dielectric constant; c is speed of light; e and m are electron charge and mass;

fil(Rk) and ∆Eil(Rk) are oscillator strength and transition energy from initial i to final l state at

structure Rk; g(E −∆Eil (Rk) ,δ ) is a normalized line shape function that is peaked at transition
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energy ∆Eil(Rk) and broadened by a phenomenological constant δ . In practical applications, there are

two kinds of shape functions used to model line shapes. The first one is Gaussian shape function

gGauss (E −∆Eil,δ ) =
(

2
π

)1/2 h̄
δ

exp

(
−2(E −∆Eil)

2

δ 2

)
(2)

the second one is Lorentzian shape function

gLorentz (E −∆Eil,δ ) =
h̄δ
2π

[
(E −∆Eil)

2 +

(
δ
2

)2
]−1

(3)

in which h̄ is reduced Planck constant. Our group has recently implemented this method for absorption

spectra simulations.3–6 In the present work, Gaussian shape function is used for simulating absorption

spectra from ground to excited state (i = 0).

Fewest-Switches Surface-Hopping Method

Trajectory-based fewest-switches surface-hopping dynamics simulation approaches by Tully et al.7,8 has

been extensively employed to simulate a series of ultrafast excited-state relaxation processes in chemical

and biological systems, and materials.9–24 In the following, a brief presentation is given.

Time-dependent Schrödinger equation can be written as

ih̄Ψ̇(r,R(t), t) = Ĥ0(r,R(t))Ψ(r,R(t), t) (4)

where Ĥ0(r,R(t)) is zero-order electronic Hamiltonian while r and R are spatial coordinates of electron

and nuclear respectively. Time-dependent electronic wavefunction is then expressed in terms of linear

combination of adiabatic zero-order electronic spatial wavefunctions:

Ψ(r,R(t), t) =
N

∑
i=1

Ci(t)Ψi(r,R(t)) (5)

in which Ψi(r,R(t)) is an eigenfunction of zero-order Hamiltonian Ĥ0(r,R(t)) at nuclear coordinates

R(t). After inserting Eq. 5 into Eq. 4, multiplying by < Ψ j(r,R(t))| from left-hand side, and
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integrating over electronic spatial coordinates, we obtain

Ċ j(t) =−ih̄−1C j(t)E j(R(t))−
N

∑
i

Ci(t)τ ji(t) (6)

where τ ji(t) =< Ψ j | ∂
∂ t | Ψi > is time derivative nonadiabaic coupling between different adiabatic

states. τ ji(t) can also be expressed as v(t) · d ji(R(t)) in which v(t) and d ji(R(t)) are nuclear

velocities and adiabatic derivative couplings respectively. Therefore, Eq. 6 can also be written as

Ċ j(t) =−ih̄−1C j(t)E0
j (R(t))−

N

∑
i

Ci(t)v(t) ·d ji(R(t)) (7)

which is the central equation of fewest-switches surface-hopping method and can describe radiationless

transitions between electronic states with same spins. Fewest-switches criterion finally yields transition

probability from i to j states

pi j(t)dt = 2
Re(C∗

i C jτi j)

C∗
i Ci

dt (8)

This method has been implemented in GTSH package that is initially developed by Prof. Ganglong

Cui and Prof. Walter Thiel25 and interfaced with TDDFT method by Dr. Xiang-Yang Liu under the

supervision of Prof. Ganglong Cui.3–6,26 The developed methods have been widely used to simulation

photoinduced ultrafast processes of various systems in both gas and solution phases.

Time-Derivative Nonadiabatic Couplings

Time derivative nonadiabaic couplings τ ji(t) can be calculated from adiabatic derivative couplings

d ji(R(t)) and nuclear velocities v(t) and there are also some analytical algorithms for d ji(R(t)).27–29

In addition, there are two types of numerical algorithms available to directly compute τ ji(t) in the

framework of TD-DFT.30,31 Our present work uses recently developed algorithm that has been demon-

strated more efficient than previous algorithm.3,31 A brief presentation is given below, in which subscripts

a,b,c... denote virtual orbitals; i, j,k... label occupied orbitals; and p,q,r... are for any type of orbitals.

In TD-DFT, total electronic wave function of an electronically excited state ΨK is approximately
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written as linear combination of singly excited Slater determinants,

ΨK =
occ

∑
i

unocc

∑
a

wK
iaψa

i (9)

in which wK
ia stands for coefficient of excited Slater determinant ψa

i . Slater determinant ψa
i = â†

aâiψ0

is constructed through electron creation and annihilation operations on ground-state determinant ψ0.

In this situation, time derivative nonadiabatic coupling term between states K and J, namely τKJ =<

ΨK | ∂
∂ t |ΨJ >, can be further written as

τKJ = ∑
i jab

(
wK

ia∂twJ
jb

〈
ψa

i

∣∣∣ψb
j

〉
+wK

iawJ
jb

〈
ψa

i

∣∣∣∂tψb
j

〉)
(10)

The first term is transformed to ∑
ia

wK
ia∂twJ

ia concerning Slater-Condon rule. Time differentiation on ψb
j

is

∂tψb
j = ∑

k ̸= j
ψbk

′

jk +ψb
′

j (11)

where ψq′
p means that molecular orbital ϕp is replaced with time derivative ∂tϕq. Therefore, the second

term becomes 〈
ψa

i

∣∣∣∂tψb
j

〉
= ∑

k ̸= j

〈
ψa

i

∣∣∣ψbk
′

jk

〉
+
〈

ψa
i

∣∣∣ψb
′

j

〉
(12)

in which the last term is reduced to δi j ⟨ϕa |∂tϕb ⟩ because only one term with k = i and a = b from

sum over k survives due to orthogonality condition
〈
ϕp
∣∣∂tϕp

〉
= 0 for real orbitals and

〈
ϕp
∣∣ϕq
〉
= δpq.

Then, we arrive at 〈
ψa

i

∣∣∣∂tψb
j

〉
= δi j ⟨ϕa |∂tϕb ⟩−Pi jδab

〈
ϕ j |∂tϕi

〉
(13)

where Pi j is an additional phase factor that depends on ordering convention for orbitals used in Slater

determinants. Finally, computational formula of time derivative nonadiabatic couplings is written as

τKJ = ∑
ia

wK
ia∂twJ

ia +∑
iab

wK
iawJ

ib ⟨ϕa |∂tϕb ⟩−∑
i ja

Pi jwK
iawJ

ja
〈
ϕ j |∂tϕi

〉
(14)

in which those terms related to time differentiation on molecular orbitals can be calculated using finite-
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difference scheme 〈
ϕp
∣∣∂tϕq

〉
=

1
∆t

〈
ϕp (t)

∣∣ϕq (t +∆t)
〉

(15)

where ϕp (t) and ϕq (t +∆t) represent molecular orbitals at t and t +∆t times, respectively. Detailed

derivation of this algorithm can be found in recent literature.31 The corresponding algorithm has been

independently coded into a standalone module in the GTSH package and widely used.3–6,25

Fragment-Based Exciton Analysis

There are several different analysis methods capable of examining excited-state characters, intra- and

inter-molecular electron and energy transfers of complex systems in particular those donor-acceptor

systems. One of the most popular methods is based on analyzing one-electron transition density

matrices, which can be implemented in different atomic orbital representations, e.g. nonorthogonal

atomic orbitals32 and orthogonalized Löwdin atomic orbitals.33 Recently we have implemented a similar

analysis method using orthogonalized Löwdin atomic orbital representation.3–5 In such way, one-electron

transition density matrix TLO is expressed as

TLO = (SAO)
1/2 TAO (SAO)

1/2 = (SAO)
1/2 (CTMOCT)(SAO)

1/2 (16)

where C and SAO are MO coefficients and AO overlap matrices; TAO and TMO represent one-electron

transition density matrices in AO and MO representations. Due to orthogonalization property of Löwdin

atomic orbitals, transition contribution from a to b atoms becomes

Dab = ∑
i∈a, j∈b

(TLO)
2
i j (17)

where i and j are indices of atomic orbitals and a and b are indices of atoms. Thus, transition

contribution from a fragment D to another fragment A in a system is given by

ΩDA = ∑
a∈D,b∈A

Dab (18)
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in which D = A and D ̸= A represent local excitation (LE) within D fragment and charge transfer (CT)

excitation from D to A fragment. Accordingly, contributions of LE and CT to an interested excited

state can be quantitatively obtained.3–5,32,33 These ΩDA can also be regarded as weights of different

fragment-based LE and CT excitons. Moreover, time-dependent electron and hole amounts on a fragment

can also be calculated.5,6 The hole amount on a fragment D, as a result of electron transfer from D to

all fragments A, is computed as

hD = ∑
a∈D

Dab = ∑
A

ΩDA (19)

while, the electron amount of a fragment A transferred from all fragments D is defined as

eA = ∑
b∈A

Dab = ∑
D

ΩDA (20)

Electron-Hole Distance

Electronic excitation always results in many pairs of hole and electron, which are represented as singly

excited Slater determinants ψa
i in TD-DFT calculations (see above). These electron-hole pairs can be

described by occupied and unoccupied MO indices. However, such kind of analysis could be complex if

many pairs of MOs are involved. Instead, analyzing spatial distribution of electron and hole produced

by all pairs of involved MOs is more useful. In such scheme, hole and electron densities are written as

follows34,35

ρhole (r) = ρhole
loc (r)+ρhole

cross (r) = ∑
i→a

(wia)
2 ϕi (r)ϕi (r)+ ∑

i→a
∑

j ̸=i→a
wiaw jaϕi (r)ϕ j (r) (21)

ρelectron (r) = ρelectron
loc (r)+ρelectron

cross (r) = ∑
i→a

(wia)
2 ϕa (r)ϕa (r)+ ∑

i→a
∑

i→b̸=a
wiawibϕa (r)ϕb (r)

(22)
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in which ∑i→a ≡ ∑occ
i ∑vir

a and ∑i→a ∑ j ̸=i→a ≡ ∑occ
i ∑occ

j ̸=i ∑vir
a ; wia is coefficient of excited Slater

determinant ψa
i in an electronically excited electronic state; ϕi (r) and ϕ j (r) are MOs that hole

occupies; ϕa (r) and ϕb (r) are MOs that electron occupies. In these equations, the first and second

terms stand for contributions of local and cross terms. It is clear that these two electron and hole

densities satisfy
∫

ρhole (r)dr = 1 and
∫

ρelectron (r)dr = 1 due to orthonormality properties of MOs

and total sum of squares of all configuration coefficients is 1.0, which means that only one electron is

excited leaving one hole. On the basis of electron and hole densities, useful parameters to characterize

electron-hole separation can be defined, such as distance of centroids of electron and hole.

Based on density distributions of hole and electron, centroids of hole and electron can be calculated

to approximately represent positions of hole and electron. In such case, centroid coordinates X , Y , and

Z of electron can be calculated as

Xelectron =
∫

xρelectron (r)dr (23)

Yelectron =
∫

yρelectron (r)dr (24)

Zelectron =
∫

zρelectron (r)dr (25)

where x, y, and z are Cartesian coordinate components of electron. Similarly, one can define those for

hole. Based on centroids of hole and electron, the electron-hole distance is estimated as

√
(Dx)

2 +(Dy)
2 +(Dz)

2

in which Dx =| Xele −Xhole |, Dy =| Yele −Yhole |, and Dz =| Zele − Zhole |. This distance, called

D index in the main text, can be used to evaluate charge separation process. In the present work,

time-dependent D index is calculated on the basis of time-dependent densities of electron and hole.
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Additional Figures

Figure 1: The time-dependent total energies of the PTB7:PDI heterostructure during 1 ps NVT
molecular dynamics simulations.

Figure 2: The structures of PDI and PTB7 molecule optimized at B3LYP+D3 level.
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Figure 3: The structures optimized without van der Waals corrections of PDI, PTB7 and PTB7:PDI
interface studied in present work.
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Figure 4: Time-dependent electron and hole transfer dynamics excited PDI (a and b) and PBI (c and
d) only respectively.

Figure 5: Time-dependent populations of involved excited singlet states of PTB7:PDI interface calcu-
lated based on our dynamics simulations.
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Figure 6: The Fourier transformation of the relevant energy differences of adjacent excited states.
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