Supporting Information Material

Theoretical modeling of the singlet-triplet spin transition in different Ni(II)-diketo-pyrphyrin based metal-ligand octahedral complexes

Alex A. Farcaș^{a,b} and Attila Bende*,^a

^aNational Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293, Cluj-Napoca, Romania.

^bFaculty of Physics, "Babeş-Bolyai" University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania.

Table S1. The equilibrium geometry conformations of the four proposed metal-organic complexes for the singlet spin configuration calculated at B3LYP*-D3/def2-TZVP and CAM-B#LYP-17-D3 levels of theory.

₽⊕Ру

Table S2. The equilibrium geometry conformations of the four proposed metal-organic complexes for the triplet spin configuration calculated at B3LYP*-D3/def2-TZVP and CAM-B#LYP-17-D3 levels of theory.

Table S3. The equilibrium geometry conformations of the four proposed metal-organic complexes for the MECP geometry configuration calculated at B3LYP*-D3/def2-TZVP and CAM-B3LYP-17-D3 levels of theory.

Figure S1. The orbitals transition scheme between the equilibrium geometries with singlet and triplet spin states for the DP⊕Mes metal-organic complex obtained at CAM-B3LYP-17-D3 level of theory.

Figure S2. The theoretical UV-Vis absorption spectra with both the singlet and triplet spin configurations, computed for the DP⊕Mes metal-organic complex considering the TD-DFT framework at CAM-B3LYP-17/def2-TZVP level of theory.

El. Excited	Singlet		El. Excited	Triplet	
State	Trans.	Freq.	State	Trans.	Freq.
S ₂	$\pi \rightarrow \pi$, VL \rightarrow PL, M \rightarrow PL	869.2 (0.0355)	T ₃	$VL\toPL$	713.6 (0.0240)
S ₄	$n \rightarrow \pi$, VL \rightarrow PL, M \rightarrow PL	665.8 (0.0534)	T ₆	$VL\toPL$	655.2 (0.0010)
S ₆	VL, $M \rightarrow PL$	573.4 (0.0116)	T ₈	$VL\toPL$	640.9 (0.0130)
S ₈	$VL\toPL$	557.5 (0.0140)	T9	$\begin{array}{c} VL \to M \\ \pi \to \pi \end{array}$	596.3 (0.0067)
S ₁₁	$VL\toPL$	499.1 (0.0043)	T ₁₃	$VL\toPL$	546.8 (0.001
S ₁₃	VL, $M \rightarrow PL$	455.7 (0.0138)	T ₁₆	VL, $M \rightarrow PL$	540.5 (0.0099)
S ₁₇	VL, $M \rightarrow PL$	439.8 (0.0037)	T ₁₈	$VL \rightarrow PL$	537.7 (0.0005)
S ₂₆	VL, $M \rightarrow PL$	355.5 (0.0070)	T ₂₀	$VL \rightarrow PL$	538.6 (0.0010)
S ₂₉	VL, $M \rightarrow PL$	345.8 (0.0057)	T ₂₄	VL, $M \rightarrow PL$	516.2 (0.0019)
S ₃₀	$\pi \rightarrow \pi$ VL, M \rightarrow PL				

Table S4. The most relevant electronic excited states and their oscillator strengths in parenthesis ($f_{osc} > 0.003$ for singlet and $f_{osc} > 0.001$ for triplet) for the DP \oplus Py metal-organic complex with octahedral coordination computed at TD-DFT/CAM-B3LYP-17-D3/def2-TZVP level of theory considering both the singlet and triplet spin configurations. (VL = vertical ligand; PL = planar ligand; M = metal)

Table S5. The orbital shapes of the Natural Difference Orbitals (NDO) obtained as the difference between the corresponding ground state and the electronic excited state densities for the DP \oplus Py metal-organic complex with octahedral coordination computed at TD-DFT/CAM-B3LYP-17-D3/def2-TZVP level of theory (blue is the positive and orange means the negative densities).

