Supplementary Information for

First-Principles Exploration of Oxygen Vacancy Impact on Electronic and Optical Properties of ABO_{3-δ} (A = La, Sr; B = Cr, Mn) Perovskites

Jongwoo Park¹, Yu-Ning Wu¹, Wissam A. Saidi^{1,2}, Benjamin Chorpening¹, and Yuhua Duan^{1*}

¹ National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236 USA

² Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 USA

* Corresponding author. E-mail: yuhua.duan@netl.doe.gov.

Table of Contents

S1. Oxygen Vacancy Formation Energy

- **Table S1.** Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for LaCrO₃ (Fig. 2a).
- **Table S2.** Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for LaMnO₃ (Fig. 2b).
- **Table S3.** Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for SrCrO₃ (Fig. 2c).
- **Table S4.** Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (*q*) as a function of Fermi level (*E*_F) for SrMnO₃ (Fig. 2d).
- **S2.** Electronic Band Structures of Oxygen-Vacant LaCrO₃ and LaMnO₃
 - Fig. S1. Electronic band structures along the high-symmetry paths in the first Brillouin zones and PDOS for oxygen-vacant (a) LaCrO₃ v_0^q and (b) LaMnO₃ v_0^q . Zero of the energy (*E*) scale is position of the Fermi level (*E*_F) set in the middle between the band edges.
 - **Fig. S2.** Charge density maps for (a) AFM-G magnetic ordered LaCrO₃ (v_0^q) and (b) FM magnetic ordered LaMnO₃ (v_0^q). The maps are shown with primitive cells for pristine LaCrO₃ and LaMnO₃, and with 2 × 1 × 1 supercells for oxygen-vacant LaCrO₃ v_0^q and LaMnO₃ v_0^q . Charge density in space is depicted by smooth shadings with the color scheme (indicated with a bar on the right) for the charge density isovalue.

References

S1. Oxygen Vacancy Formation Energy

Tables S1 - S4 curate the numerical data of the formation energy of oxygen mono-vacancy in ABO₃ (A = La, Sr, B = Cr, Mn) perovskites with different valence charges as a function of Fermi level shwon in Fig. 2 of the main text.

Table S1. Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for LaCrO₃ (Fig. 2a).

$q = 0 (v_0^0) *$		$q = 1 + (v_0^{1+})$		$q = 2 + (v_0^{2+})$	
$E_{\rm F}$ (eV)	ΔH^q (eV)	$E_{\rm F}$ (eV)	ΔH^q (eV)	$E_{\rm F}~({\rm eV})$	ΔH^q (eV)
0.00	4.95	0.00	4.05	0.00	3.15
0.25	4.95	0.25	4.30	0.25	3.65
0.50	4.95	0.50	4.55	0.50	4.15
0.75	4.95	0.75	4.80	0.75	4.65
1.00	4.95	1.00	5.05	1.00	5.15
1.25	4.95	1.25	5.30	1.25	5.65
1.50	4.95	1.50	5.55	1.50	6.15

* Due to the nature of eqn. (1) discussed in the main text, ΔH^q does not vary with E_F when q = 0.

Table S2. Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for LaMnO₃ (Fig. 2b).

$q = 0 (v_0^0) *$		$q = 1 + (v_0^{1+})$		$q = 2 + (v_0^{2+})$	
$E_{\rm F}~({\rm eV})$	ΔH^q (eV)	$E_{\rm F}~({ m eV})$	ΔH^q (eV)	$E_{\rm F}~({\rm eV})$	ΔH^q (eV)
0.00	3.48	0.00	3.32	0.00	3.30
0.10	3.48	0.10	3.42	0.10	3.50
0.20	3.48	0.20	3.52	0.20	3.70
0.30	3.48	0.30	3.62	0.30	3.90
0.40	3.48	0.40	3.72	0.40	4.10
0.50	3.48	0.50	3.82	0.50	4.30

* Due to the nature of eqn. (1) discussed in the main text, ΔH^q does not vary with E_F when q = 0.

$q = 0 (v_0^0) *$		<i>q</i> =	$q = 1 + (v_0^{1+})$		$q = 2 + (v_0^{2+})$	
$E_{\rm F}$ (eV)	ΔH^q (eV)	$E_{\mathrm{F}}(\mathrm{eV})$	ΔH^q (eV)	$E_{\mathrm{F}}(\mathrm{eV})$	ΔH^q (eV)	
0.00	4.32	0.00	3.93	0.00	3.53	
0.25	4.32	0.25	4.18	0.25	4.03	
0.50	4.32	0.50	4.43	0.50	4.53	
0.75	4.32	0.75	4.68	0.75	5.03	
1.00	4.32	1.00	4.93	1.00	5.53	

Table S3. Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for SrCrO₃ (Fig. 2c).

* Due to the nature of eqn. (1) discussed in the main text, ΔH^q does not vary with E_F when q = 0.

Table S4. Formation energy of oxygen mono-vacancy (ΔH^q) employing different vacancy charge states (q) as a function of Fermi level (E_F) for SrMnO₃ (Fig. 2d).

$q = 0 (v_0^0) *$		q =	$q = 1 + (v_0^{1+})$		$q = 2 + (v_0^{2+})$	
$E_{\rm F}$ (eV)	ΔH^q (eV)	$E_{\rm F}({ m eV})$	ΔH^q (eV)	$E_{\mathrm{F}}(\mathrm{eV})$	ΔH^q (eV)	
0.00	1.48	0.00	1.05	0.00	0.78	
0.20	1.48	0.20	1.25	0.20	1.18	
0.40	1.48	0.40	1.45	0.40	1.58	
0.60	1.48	0.60	1.65	0.60	1.98	
0.80	1.48	0.80	1.85	0.80	2.38	
1.00	1.48	1.00	2.05	1.00	2.78	

* Due to the nature of eqn. (1) discussed in the main text, ΔH^q does not vary with E_F when q = 0.

S2. Electronic Band Structures of Oxygen-Vacant LaCrO₃ and LaMnO₃

Fig. S1 shows the electronic band structures, and atom- and angular-momentum projected PDOS for oxygen-vacant LaCrO₃ and LaMnO₃ with different vacancy charges discussed in Fig. 4 of the main text. PDOS of oxygen-vacant v_0^q states of LaCrO₃ and LaMnO₃ are reproduced from Fig. 4 for complete comparisons.

Fig. S1. Electronic band structures along the high-symmetry paths in the first Brillouin zones and PDOS for oxygen-vacant (a) LaCrO₃ v_0^q and (b) LaMnO₃ v_0^q . Zero of the energy (*E*) scale is position of the Fermi level (*E*_F) set in the middle between the band edges.

Fig. S2 shows the electronic charge density displaying the density of electrons in pristine and oxygen-vacant LaCrO₃ and LaMnO₃ to examine the electron distribution of these systems.¹ The charge density isovalue is higher in pristine LaCrO₃ than in LaMnO₃. In each material, the charge density isovalues are increased (i.e. when closing to the nuclues of atoms) in oxygen-vacant systems relative to the corresponding pristine materials. Nonetheless the impact of neutral and/or charged vacancy on their charge density maps is not eyecatching.

Fig. S2. Charge density maps for (a) AFM-G magnetic ordered LaCrO₃ (v_O^q) and (b) FM magnetic ordered LaMnO₃ (v_O^q). The maps are shown with primitive cells for pristine LaCrO₃ and LaMnO₃, and with 2 × 1 × 1 supercells for oxygen-vacant LaCrO₃ v_O^q and LaMnO₃ v_O^q . Charge density in space is depicted by smooth shadings with the color scheme (indicated with a bar on the right) for the charge density isovalue.

References

1 C. Gatti and P. Macchi, A Guided Tour Through Modern Charge Density Analysis. In Modern Charge-Density Analysis, Springer, Dordrecht, 2011.