## Supporting Information

## Oxidation of Isoprene by Titanium Oxide Cluster Cations in the Gas Phase

Shu-Qiang Li,<sup>a</sup> Shi-Ying Lv,<sup>b,c</sup> Hai-Yan Zhou,<sup>a</sup> Yong-Qi Ding,<sup>a</sup> Qing-Yu Liu<sup>b</sup> and Jia-Bi Ma<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

<sup>b</sup> State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

<sup>c</sup> University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

\* E-mail: majiabi@bit.edu.cn

## **Table of Contents**

- 1. Additional time-of-flight (TOF) mass spectra. (pages S3-S6)
- 2. Variations of the relative intensities of the reactant and product cluster ions in the reactions. (page S7)
- 3. The reaction channels and the pseudo first-order rate constants  $(k_1)$ . (pages S8-S9)
- 4. DFT-calculated structures of C<sub>3</sub>H<sub>4</sub>O, C<sub>5</sub>H<sub>6</sub>O, and C<sub>5</sub>H<sub>7</sub>O. (pages S10-S11)
- 5. Comparison of neutral products of C<sub>5</sub>H<sub>8</sub> oxidation. (page S12)
- 6. References. (page S13)









**Fig. S1** TOF mass spectra for the reactions of mass-selected  $Ti_xO_y^+$  cations (panels a, c, e, g, i, k, m, o, q, s, u, w, y1, and z1) with  $C_5H_8$  (panels b, d, f, h, g, l, n, p, r, t, v, x, y2, and z2). The time periods for the reactions are 3.7 ms in h) and 1.7 ms in the other panels. The  $C_5H_8$  pressures are given. The  $Ti_xO_yZ^+$  ( $Z = C_2H_4$ ,  $C_4H_6$ , or other  $C_mH_n$ ) species are labeled as " $x_xy_zZ$ ".



**Fig. S2** Variations of the relative ion intensities with respect to the C<sub>5</sub>H<sub>8</sub> pressures in the reactions of (a) Ti<sub>2</sub>O<sub>5</sub><sup>+</sup> and C<sub>5</sub>H<sub>8</sub> for 3.7 ms, (b) Ti<sub>4</sub>O<sub>8</sub><sup>+</sup> and C<sub>3</sub>H<sub>6</sub> for 1.7 ms, respectively. The Ti<sub>x</sub>O<sub>y</sub>Z<sup>+</sup> ( $Z = C_2H_4$ , C<sub>4</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>8</sub>, C<sub>5</sub>H<sub>6</sub>, or C<sub>5</sub>H<sub>8</sub>) species are labeled as " $x_xy_zZ$ ".

| r | 1/ | <b>Λ</b> [a] | Reaction Channel Types |              |              |              |   | $k_1$      | a <sup>[b]</sup> |
|---|----|--------------|------------------------|--------------|--------------|--------------|---|------------|------------------|
| л | У  |              | 1                      | 2            | 3            | 4            | 5 | <i>K</i> 1 | Ø                |
| 1 | 1  | -1           |                        | $\checkmark$ | ×            | ×            | × | 3.0        | 220%             |
| 1 | 2  | 1            | ×                      |              | $\checkmark$ | ×            | × | 1.8        | 139%             |
| 1 | 3  | 3            | ×                      | ×            | ×            | $\checkmark$ |   | 2.7        | 218%             |
| 2 | 3  | -1           |                        | ×            | ×            | ×            | × |            |                  |
| 2 | 4  | 1            | ×                      | $\checkmark$ | $\checkmark$ | $\checkmark$ |   | 2.8        | 247%             |
| 2 | 5  | 3            | ×                      | ×            | ×            | $\checkmark$ |   | 2.6        | 238%             |
| 3 | 5  | -1           |                        | ×            | ×            | ×            | × |            |                  |
| 3 | 6  | 1            | ×                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | × | 2.6        | 242%             |
| 3 | 7  | 3            |                        | ×            | ×            | ×            | × |            |                  |
| 4 | 7  | -1           |                        | ×            | ×            | ×            | × |            |                  |
| 4 | 8  | 1            |                        | $\checkmark$ | ×            | $\checkmark$ |   | 2.0        | 196%             |
| 4 | 9  | 3            |                        | ×            | ×            | ×            | × |            |                  |
| 5 | 9  | -1           |                        | ×            | ×            | ×            | × |            |                  |
| 5 | 10 | 1            |                        | $\checkmark$ | ×            |              | × | 2.7        | 263%             |
| 6 | 12 | 1            |                        | ×            | ×            | ×            | × |            |                  |
| 7 | 14 | 1            |                        | ×            | ×            | ×            | × |            |                  |

**Table S1.** The reaction channels of  $Ti_xO_y^+$  clusters with isoprene and the pseudo first-order rate constants ( $k_1$ ) (in 10<sup>-9</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>).

<sup>[a]</sup>  $\Delta = 2y \cdot nx + q$ , *q*: the charge number, *n*: the highest oxidation state of element Ti. <sup>[b]</sup> Reaction efficiency is defined as  $\emptyset = (k_1/k_{calc}) \times 100\%$  and  $k_{calc}$  is the theoretical rate of collision that is calculated with  $k_{calc} = 2\pi (e^2 \alpha / \mu)^{1/2}$ , in which *e* is the charge of the cluster ion,  $\alpha$  is the electric polarizability of the reactant molecule, and  $\mu$  is the reduced mass.<sup>1</sup>

(a) C<sub>3</sub>H<sub>4</sub>O ⊶<~>⊸⊶ IA11 C<sub>1</sub> 0.00 IA6 C<sub>1</sub> 1.32 IA7 C<sub>1</sub> 1.49 Methylketene IA10 C<sub>1</sub> 2.14 IA2 C<sub>1</sub> 3.61 IA3  $C_1$  5.86 IA5 C<sub>1</sub> 2.61 IA9 C<sub>1</sub> 2.18 IA4 C<sub>1</sub> 2.50 IA8 C1 1.52 (b) C<sub>5</sub>H<sub>6</sub>O IA5 C<sub>1</sub> 0.00 IA7 C<sub>1</sub> 0.12  $IA6 C_1 0.75$ 3-Methylfuran 2-Methylfuran ී IA9 C<sub>1</sub> 1.58 IA10 C1 1.83 IA8 C<sub>1</sub> 2.09

IA1 C<sub>1</sub> 0.51

**Fig. S3** DFT-calculated structures of neutral products (a)  $C_3H_4O$ , (b)  $C_5H_6O$ , and (c)  $C_5H_7O$  of the reaction  $Ti_2O_5^+ + C_5H_8$ . The spin states of (a)  $C_3H_4O$  and (b)  $C_5H_6O$  are singlet, and that of (c)  $C_5H_7O$  is doublet. The zero-point vibration-corrected energies ( $\Delta H_{0K}$  in eV) of the possible products with respect to the separated reactants  $Ti_2O_5^+$  and  $C_5H_8$  are given.

|                          | Neutral Products                                                                                                                                                                                    |                                                                                                                               |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Product Type             | $Ti_xO_y^+ + C_5H_8$                                                                                                                                                                                | TiO <sub>2</sub> surfaces                                                                                                     |  |  |  |  |
| Hydrocarbon<br>Compounds | C <sub>5</sub> H <sub>7</sub><br>C <sub>5</sub> H <sub>6</sub><br>C <sub>2</sub> H <sub>2</sub> (Acetylene)<br>C <sub>3</sub> H <sub>4</sub> (Propyne)<br>C <sub>3</sub> H <sub>6</sub> (Propylene) | Propanal                                                                                                                      |  |  |  |  |
| Carbonyl<br>Compounds    | CH <sub>2</sub> O (Formaldehyde)<br>C <sub>3</sub> H <sub>4</sub> O (Methylketene)                                                                                                                  | CH <sub>2</sub> O (Formaldehyde)<br>Butanal/butanone<br>methacrolein, MACR<br>Pentanal<br>Acetone<br>methyl vinyl ketone, MVK |  |  |  |  |
| Others                   | CO<br>H <sub>2</sub> O<br>C <sub>5</sub> H <sub>6</sub> O (2-Methylfuran)<br>C <sub>5</sub> H <sub>7</sub> O                                                                                        | CO <sub>2</sub><br>Acetaldehyde                                                                                               |  |  |  |  |

**Table S2.** Comparison of neutral products of  $C_5H_8$  oxidation mediated by  $Ti_xO_y^+$  cations and  $TiO_2$  surfaces.

## References

1. G. Kummerlowe and M. K. Beyer, Int. J. Mass Spectrom., 2005, 244, 84-90.