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1. Root-mean-square deviation 
 
The root-mean-square deviation (RMSD) was calculated using 

𝑅𝑀𝑆𝐷(𝑡) = √
∑ (𝑟𝑖(𝑡) − 𝑟𝑖(𝑡0))

2𝑁𝑎𝑡𝑜𝑚𝑠
𝑖=1

𝑁𝑎𝑡𝑜𝑚𝑠
  

where 𝑟𝑖(𝑡0) refers to the position of the diphenylalanine (FF) atoms at the start of the simulation and 𝑟𝑖(𝑡)  
to the position at time t. At each time step, t, the RMSD was minimised through a rotation and translation 
fit. The optimised RMSD was taken as a measurement of the physical stability of a structure. 

 

 

2. Absorbance of diphenylalanine 
 
The peaks seen in the absorbance spectrum of FF are due to the π-π* transitions from the phenyl 
chromophore (Figure S1).  

 

 
 

Figure S1. Absorbance signal for FF in water (2 mg/mL). 
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3. Linear Dichroism 
 
Linear dichroism (LD) is a polarized light spectroscopy technique which relies on the orientation of the 
molecules that are being probed. Two beams of perpendicularly linearly polarised light are shone at the 
sample, and the difference in absorbance of each of these polarisations is measured 

𝐿𝐷 = 𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 −  𝐴𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  

Net alignment of molecules in the sample is essential for a non-zero LD signal because the electronic 
transition moments will only absorb light when they are aligned with the electric field of the radiation. The 
relationship between the LD signal and the orientation of the molecules  is given by 

𝐿𝐷 =
3

2
𝑆𝐴𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐(3cos2𝛼 − 1)  

where 𝐴𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐  is the absorbance of an unoriented sample, 𝑆 is the orientation parameter (𝑆 = 1 for an 

oriented sample and 𝑆 = 0 for an isotropic one), and 𝛼 is the angle between the transition moment and the 
alignment (fibre) axis. 

In our case the sample is oriented by Couette flow, with the outer capillary, which contains the liquid sample, 
rotating and a stationary rod rigidly suspended in the middle of the capillary (Figure S2). The rotating capillary 
has a 3.0 mm internal diameter and spins at 3,000 rpm, while the stationary rod suspended in the middle has 
a 2.5 mm outer diameter.1, 2 The instrument geometry is such that one beam of light is parallel to the 
orientation of the sample and the other is perpendicular to it. Molecular structures with significant aspect 
ratios become aligned in the flow, and their absorbance signals show an LD signal. 

A background spectrum is taken with no spinning (as no signal is expected from an isotropic sample) and 
subtracted from the spinning spectrum in order to create an LD spectrum. In a time-series (e.g. during kinetics 
studies) the capillary spinning was switched off between measurements at every time point in order to 
acquire a reference background spectrum. Macros were created within the Jasco J-815 Spectra Manger 
software in order to complete the sequences needed for the variable temperature and kinetics 
measurements. Moreover, an electronic control box was built in order to switch the spinning on and off 
between measurements. However, as the fibres grew larger, an LD signal was observed even in the absence 
of Couette flow, indicating that some fibres were probably stuck inside the cell. Therefore, the background 
measurement at the start of the experiment, before any fibres had formed, was used for plotting all spectra 
and the change in background was used to indicate when the fibres had become too large for the 
experimental set-up. 

Special care had to be taken when cleaning the LD capillary and rod, as the fibres stuck to them and could 
have provided nucleation sites in successive experiments. Capillaries with a Teflon stopper at the base were 
manufactured for this work to facilitate cleaning. Between experiments, the components were soaked in a 
6 M HNO3 bath overnight to dissolve any residual FF.  

 

Figure S2. Schematic setup of a linear dichroism experiment. Two perpendicular beams of linearly polarized light are shone at a 
sample which is in a spinning capillary with a stationary rod in the middle. The difference in absorbance of these two polarisations is 
measured by the detector. The sample fits in the 250 µm gap between the quartz rod and quartz capillary (quartz indicated in blue). 
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Some aspects of the specific experimental setup used in this work have important consequences for 
the interpretation of the data. Firstly, small fibres are invisible to this technique because they are not 
long enough to be able to align in shear flow. There is also a maximum length, which is essentially 
the diagonal across the gap between capillary and rod. The capillary has an inner diameter of 
𝑑2 =  3.0 mm and the rod has a diameter 𝑑1 = 2.5 mm so that when fibres grow longer than 𝑙𝑚𝑎𝑥  
they get stuck and can no longer align properly in the flow (see Figure S3). Therefore, the signal that 
we get from them after this point is no longer comparable to the signal from when they were shorter. 

In particular from Figure S3 it can be seen that 𝑙𝑚𝑎𝑥 =
𝑑1

𝑡𝑎𝑛[𝑠𝑖𝑛−1(𝑑1/𝑑2)]
= 1.66 mm. 

 

Figure S3. Schematic representation of the maximum length that can be reached by growing fibres before they get stuck 
in the gap between capillary and rod in the LD Couette cell. 

 
 
However, when the fibres are short, LD can tell us all about the time frame of the kinetics of the fibre 
assembly. It is also possible to infer information about the onset of the assembly from LD data. 
Although it is not possible to see the initial small assemblies, it is possible to detect fibres at a fixed 
point after this has happened (Figure S4). The fibres have to be a set length for the signal to appear, 
and this size will not change between experiments. Therefore, the variation in onset time that we 
see with linear dichroism is real and comes from the fact that the nucleation is a random process. 
 

 
 

Figure S4. LD signal of FF fibres forming from a 2 mg/ml FF monomer solution as the reaction mixture is cooled from 70°C to 20°C at 
a rate of 1 °C/min. Initially there is no signal, but as the fibres start to assemble peaks appear in the 230 nm and 250–270 nm regions. 
No baseline correction has been implemented. The change in baseline as a function of time is due to the increase in light scattering 
as the fibres become larger. 
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4. LD at 70 °C for 4 Hours 
 
The data in Figure S5 show the LD signal at 70 °C over 4 hours. No peaks re visible, indicating that 
there are no fibres present. Therefore, fibres do not form at 70 °C for at least 4 hours. 
 

 
 

 

Figure S5. Absence of the aromatic LD signal of FF (2 mg/mL in water) at 70 °C over 4 hours. 

 

 
5. LD fit 
 
The wavelength scan LD data of Figure S6 shows a positive LD absorbance signal due to the FF — 
between about 260 and 280 nm — overlaid on a negative trending scattering signal. An example of 
the fit (pink curve) made to the LD data (red curve) to remove the scattering is shown in Figure S6.  
 

 
 

 
Figure S6. Example of LD fit at 20 °C from the thermal stability measurements of FF in water (2 mg/mL). 
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6. Cooling at 0.5 °C/min, single wavelength measurement 
 
Figure S7 shows the LD of a solution of FF as the temperature was cooled from 65°C to 20°C in 
0.5 °C /min decrements. Figure 3c in the main paper displays the results obtained at a cooling rate of 
1 °C/min. 

 

 
 

Figure S7. LD signal at 258 nm as the sample is cooled from 65 °C to 20 °C at 0.5 °C/min. 
 
 

7. Derivation of the cumulative distribution function of multiple nucleation events 
 
Nucleation is a stochastic process and in particular has been shown to be Poisson-type. The Poisson 
distribution describes the probability of a discrete random variable 𝑀 that a number of nucleation 
events, 𝑚, occurs in a given time interval, 𝑡, where 𝜆 is the rate of nucleation. 
 

 𝑃(𝑀 = 𝑚) =
(𝜆𝑡)𝑚𝑒−𝜆𝑡

𝑚!
 (S1) 

 
In order to explore the times associated with this Poisson process, we consider time as a continuous 
random variable 𝑋. The cumulative distribution function (CDF), 𝐹(𝑡), is described as follows. 
 

 𝐹(𝑡) = 𝑃(𝑋 ≤ 𝑡) (S2) 
 

 𝐹(𝑡) = 1 − 𝑃(𝑋 > 𝑡) (S3) 
 

The CDF is equal to the probability that at least one event has occurred up to and including the time 
interval 𝑡. We can find this probability, 𝑃(𝑋 > 𝑡), by setting the number of nucleation events, 𝑀, 
equal to zero in the Poisson distribution (Equation (S1)). 
 

 𝑃(𝑋 > 𝑡) = 𝑃(𝑀 = 0) (S4) 
 

 𝑃(𝑀 = 0) =
(𝜆𝑡)0𝑒−𝜆𝑡

0!
 (S5) 

 

 𝑃(𝑀 = 0) = 𝑒−𝜆𝑡 (S6) 
 
This can now be substituted into the CDF (Equation (S3)). 
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 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 (S7) 
 
This function describes the cumulative distribution of the probability for the time taken for a 
nucleation event to occur.  

However, in experiments, it may be the case that multiple nucleation events are needed in order to 
produce a density of fibres large enough to be detectable, so this must be taken into account in 
deriving the CDF. Equation (S7), i.e. the probability that at least one nucleation event is occurring 
within time 𝑡, was obtained by subtracting the probability of 0 nucleation events occurring from 
unity. The probability that up to 𝑛 events happen within time 𝑡, i.e. the probability that up to 𝑛 nuclei 
exist at time 𝑡, is given by the sum of the probabilities that 0, 1, 2, …, 𝑛 events happen.  

 𝑃(𝑢𝑝 𝑡𝑜 𝑛 𝑛𝑢𝑐𝑙𝑒𝑖 𝑒𝑥𝑖𝑠𝑡) = ∑
(𝜆𝑡)𝑖𝑒−𝜆𝑡

𝑖!
𝑛
𝑖=0  (S8) 

 
This can be substituted into Equation (S3) to produce the CDF of nuclei required in order to create 
detectable fibres. 
 

 𝐹(𝑡) = 1 − ∑
(𝜆𝑡)𝑖𝑒−𝜆𝑡

𝑖!
𝑛
𝑖=0 = 1 −

Γ(𝑛+1,𝜆𝑡)

𝑛!
 (S9) 

 
where Γ is the upper incomplete gamma function. 

It was noted by Jiang and Horst3 that, in experiments, it is not possible to measure the time taken for 
one (or more) nucleation events to occur, but instead, the time it takes to detect that one (or more) 
nucleation events have occurred. In other words, the crystals must grow large enough to be detected 
and, therefore, a growth period, 𝑡𝑔, must be introduce into the CDF equation. The total time, 𝑡, is the 

sum of the time for the nucleation event(s) to occur, 𝑥, and the growth time, 𝑡𝑔. 

 
 𝑡 = 𝑥 + 𝑡𝑔 (S10) 

 
Substituting this into Equation (S9) produces the modified CDF 

 

 𝐹(𝑡) = 1 − ∑
(𝜆(𝑡−𝑡𝑔))

𝑖
𝑒−𝜆(𝑡−𝑡𝑔)

𝑖!
𝑛
𝑖=0 = 1 −

Γ(𝑛+1,𝜆(𝑡−𝑡𝑔))

𝑛!
 (S11) 

 
This function should be compared with the fraction of experiments in which fibres have been 
detected within time t, shown in Figure 4c. Figure S8 shows the comparison between the 
experimental data and a series of CDF for increasing values of 𝑛, each of which has been individually 
optimised in terms of 𝜆 and 𝑡𝑔.  
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Figure S8. Comparison between the CDFs in Equation (S11) (continuous lines) and the experimental fraction of events which 
have nucleated versus time (filled black circles). The different lines correspond to different numbers of nucleation events 
𝑛, and each of them has been optimised in terms of of 𝜆 and 𝑡𝑔. Inset: residual sum of squares (RSS) for the fits of Equation 

(S11) to the experimental data for 𝑛 = 1 to 6. 
 
 

The best fits in Figure S8 are obtained for 𝑛 = 1 (𝑡𝑔 = 8 min and 𝜆 = 0.03 min1) and 𝑛 = 2 (𝑡𝑔 = 0 min 

and 𝜆 = 0.05 min1); the corresponding CDF functions approximate the experimental data equally 
well with residual sum of squares (RSS) values of 0.23 and 0.25, respectively. All higher values of 𝑛 
have an optimal growth period 𝑡𝑔= 0 min but result in worse fits with the experimental data, as 

demonstrated by the increasing RSS values (inset in Figure S8). 
 
 

8. Secondary nucleation 

 
Secondary nucleation events are evident as illustrated in Figure S9. 
 

 
 

Figure S9. SEM image of a fibre showing branching and breaking of fibres. 
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