Supporting Information for

An insight into the reaction mechanism of CO₂ photoreduction catalyzed by atomically dispersed Fe atoms supported on graphitic carbon nitride

Zhengyan Zhao, Wei Liu, Yantao Shi*, Heming Zhang, Xuedan Song, Wenzhe Shang, Ce Hao*State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China

*Corresponding authors.

E-mail address: shiyantao@dlut.edu.cn (Y. Shi); haoce@dlut.edu.cn (C. Hao)

The formulas of the rate constants involved in the photophysical and photochemical processes

The rate constant of the fluorescence emission $(k_F)^1$ can be calculated by the integration of the emission spectra based on Fermi's golden rule and the time-depended perturbation theory,

$$k_{\rm F}(T) = \int \sigma_{\rm em}(\omega, T) {\rm d}\omega$$

the $\sigma_{em}(\omega, T)$ is written as¹⁻²

$$\sigma_{em}(\omega,T) = \frac{4\omega^3}{3\hbar c^3} \sum_{u,v} P_{\rm iv}(T) |\langle \Theta_{\rm fu} | \mu_{\rm fi} | \Theta_{\rm iv} \rangle|^2 \delta(\omega_{\rm iv,fu} - \omega)$$

The rate constants of IC³ and ISC⁴ are calculated as follows:

$$k_{\rm IC} = \frac{2\pi}{\hbar} \sum_{u,v} P_{\rm iv} (T) \left| \sum_{n} \langle \Phi_{\rm f} | \hat{P}_{n} | \Phi_{\rm i} \rangle \langle \Theta_{\rm fu} | \hat{P}_{n} | \Theta_{\rm iv} \rangle \right|^{2} \delta(E_{\rm iv} - E_{\rm fu})$$
$$k_{\rm ISC} = \frac{2\pi}{\hbar} \sum_{u,v} P_{\rm iv} (T) \left| \langle \Phi_{\rm f} | \hat{H}^{SO} | \Phi_{\rm i} \rangle \right|^{2} \left| \langle \Theta_{\rm fu} | \Theta_{\rm iv} \rangle \right|^{2} \delta(E_{\rm iv} - E_{\rm fu})$$

where ω is the circular frequency; T is the temperature; \hbar is the reduced Planck constant; *c* is the speed of light in vacuum; *v* and *u* are the vibrational quantum numbers of the initial state and the final state, respectively; P_{iv} is the Boltzmann distribution of the initial vibronic manifold; Θ is the vibrational wavefunction; i and f are the initial and the final state, respectively; μ_{fi} is the electric transition dipole moment from the initial electronic state to the final electronic state; and δ is the Dirac operator; Φ is the electronic state; \hat{P}_n indicates the momentum operator of the nth normal vibrational mode in the final state; *n* is the index of normal vibrational modes; E represents the energy; and \hat{H}^{SO} denotes the Hamiltonian operator of spin-orbit coupling.

The reaction rate constant $k_{\rm R}$ of the photochemical process is calculated based on the transition state theory:

$$k_{\rm R} = k_i \frac{k_{\rm B}T}{h} \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right)$$
$$k_i = 1 + \frac{1}{24} \left(\frac{\hbar v_{\rm i}}{k_{\rm B}T}\right)^2$$

where $k_{\rm B}$ is the Boltzmann constant, ΔG^{\ddagger} is the Gibbs free energy, namely the difference in energies between the transition state and the reactant complex; *R* is the ideal gas constant; k_i is the transmission coefficient; and v_i is the imaginary frequency of the transition state.

	Table S1 The blank experiments of CO ₂ photoreduction.				
	Catalyst	Medium	Atmosphere	Irradiation time	СО
1	g-C ₃ N ₄	water	Ar	10 h	None
2	g-C ₃ N ₄	water	CO_2	Dark	None
3	None	water	CO_2	10 h	None

Table S1 The blank experiments of CO₂ photoreduction

Fig. S1 (a) (b) Scanning electron microscopy images of Fe-g-C₃N₄.

Fig. S2 (a) Fe K-edge k^3 -weighted EXAFS oscillations $k^3\chi(k)$ of Fe-g-C₃N₄ sample. The data of Fe foil, FeO, Fe₂O₃ and FePc are shown for reference (b) The fitting curves of k^3 -weighted EXAFS spectra and (c) $k^3\chi(k)$ oscillations of Fe-g-C₃N₄ sample using the ARTEMIS module of IFEFFIT.

Sample	Path	Ν	<i>R</i> (Å)	$\sigma^2 (10^{-3} \text{\AA}^2)$	$\Delta E_0 ({ m eV})$	<i>R</i> -factor
E CN	Fe-N ₁	2.0	2.08	2.3	6.0	0.001
Fe-g-C ₃ N ₄ -	Fe-N ₂	2.2	2.19	2.3	6.0	0.001

Table S2 EXAFS fitting results for Fe-g-C₃N₄ sample using the ARTEMIS module of IFEFFIT.

N, *R*, σ^2 , and ΔE_0 are the coordination number, interatomic distance, Debye–Waller factor, and shift in the edge energy.

Fig. S4 (a) N₂ adsorption-desorption isotherms and (b) Barrett-Joyner-Halenda (BJH) pore size distribution curves of g-C₃N₄ and Fe-g-C₃N₄ samples

Table S3 The BET surface areas, total pore volumes, and pore size of $g-C_3N_4$ and $Fe-g-C_3N_4$ samples.

	g-C ₃ N ₄	Fe-g-C ₃ N ₄
$S_{\rm BET} \ ({ m m}^2 \ { m g}^{-1})$	9.17	9.07
$V_{\text{pore}} (\text{cm}^3\text{g}^{-1})$	0.06	0.05
Pore size (nm)	17.31	16.03

Fig. S5 Spectrum of the 300 W xenon lamp used in this work.

The calculation of quantum efficiency of CO_2 reduction is given as follows. A fiber optic spectrometer (CEL-P4000, Ceaulight) was used for light source spectrum. The light intensity was charactered by an optical power meter (CEL-NP2000, Ceaulight, Beijing). The irradiated area for the reaction is 35.26 cm² (6.7 cm radius). The calculation of the apparent quantum yield (AQY) is defined as:

$$AQY(\%) = \frac{2 \times \text{the number of produced CO molecules}}{\text{the number of incident photons}} \times 100\% = \frac{Ne}{Nq}$$
$$Ne = 2 \times N_A \times n$$
$$Nq = S \times t \times \int_{200}^{1000} Nd\lambda$$
$$N = \frac{P \times \lambda}{h \times c}$$
is the total number of transfer electrons in the reaction. Not is the Avo

Ne is the total number of transfer electrons in the reaction, N_A is the Avogadro constant (6.02 × 10²³ mol⁻¹), n (in mol) is the amount of products produced by 1 g photocatalyst. *Nq* is the number of integrated photons with a wavelength from 200 nm to 1000 nm, *S* is the irradiation area, *t* is the photo-irradiation time (s), *N* is the number of incident photons, *P* is the irradiation energy, λ is the wavelength (nm), *h* is the planck constant ($h = 6.626 \times 10^{-34}$ J·s), *c* is the speed of light ($c = 3 \times 10^8$ m·s⁻¹). The calculated

AQY of g-C₃N₄ and Fe-g-C₃N₄ are 2.0×10^{-5} % and 3.8×10^{-5} %, respectively.

Fig. S6 g-C₃N₄, CO₂ and H₂O formed different hydrogen-bonded complexes at different binding sites, the optimized structures of the nine hydrogen-bonded complexes were given.

Fig. S7 Fe-g-C₃N₄, CO₂ and H₂O formed different hydrogen-bonded complexes at different binding sites, the optimized structures of the four hydrogen-bonded complexes were given.

Structures	Relative energies (kal/mol)	Structures	Relative energies (kal/mol)
Complex	0.0	Fe-Complex	0
Complex-1	0.4	Fe-Complex-1	5.6
Complex-2	2.2	Fe-Complex-2	14.5
Complex-3	2.4	Fe-Complex-3	16.4
Complex-4	3.8		
Complex-5	4.6		
Complex-6	5.9		
Complex-7	6.8		
Complex-8	8.5		

Table S4 The relative energies of the different hydrogen-bonded complexes.

Reaction coordinate

Fig. S8 The photochemical reaction path (Path-2) of CO₂ reduction for Complex.

Reaction coordinate

Fig. S9 The photochemical reaction path (Path-3) of CO₂ reduction for Complex.

Fig. S10 The optimized structures of Fe-Complex in the (a) triplet state and (b) quintet state.

 Table S5 The relative energies of the structures for Fe-Complex in the triplet and quintet states.

 (unit: kcal/mol).

	Triplet state	Quintet state
Relative energies	9.75	0.00

Fig. S11 The photochemical reaction path (Path-2) of CO₂ reduction for Fe-Complex in the triplet (red) and quintet (green) states.

The reaction order is derived as follows:

The total reaction rate is determined by the rate of the rate-limiting step:

$$r = -\mathrm{d}c({}^{3}[\mathrm{g}-\mathrm{C}_{3}\mathrm{N}_{4}\cdots\mathrm{OH}\cdots{}^{\mathrm{H}}\mathrm{O}^{-\dot{\mathrm{C}}} \otimes_{\mathrm{O}}]^{*})/\mathrm{d}t = k_{5}c({}^{3}[\mathrm{g}-\mathrm{C}_{3}\mathrm{N}_{4}\cdots\mathrm{OH}\cdots{}^{\mathrm{H}}\mathrm{O}^{-\dot{\mathrm{C}}} \otimes_{\mathrm{O}}]^{*})$$
(1)

For the absorption equilibrium formed by CO₂, H₂O and the catalyst:

$$K_1 = k_1 / k_{-1} = c({}^{1}[g - C_3 N_4 \cdots H_2 O \cdots O = C = O]) / c({}^{1}g - C_3 N_4) c(H_2 O) c(CO_2)$$
(2)

For the equilibrium between
1
[g-C₃N₄···H₂O···O=C=O]^{*} and 1 [g-C₃N₄···H₂O···O=C=O]:

$$K_{2} = c({}^{1}[g-C_{3}N_{4}\cdots H_{2}O\cdots O=C=O]^{*})/c({}^{1}[g-C_{3}N_{4}\cdots H_{2}O\cdots O=C=O])$$

Then, $c({}^{1}[g-C_{3}N_{4}\cdots H_{2}O\cdots O=C=O]^{*}) = K_{1}K_{2}c({}^{1}g-C_{3}N_{4})c(H_{2}O)c(CO_{2})$ (3)
For ${}^{3}[g-C_{3}N_{4}^{+}\cdots H_{2}O\cdots O^{*}C_{*}O^{-}]^{*}$:

Then,
$$k_4c([g-C_3N_4-H^\circ \dots OH \dots O f^\circ]) = k_5c([g-C_3N_4\dots OH \dots O f^\circ f^\circ])$$
 (6)
Combining (4), (5) and (6),

$$k_{5}c({}^{3}[g-C_{3}N_{4}\cdots OH\cdots \overset{H}{O}, \overset{C}{\sim}_{O}]^{*}) = k_{2}c({}^{1}[g-C_{3}N_{4}\cdots H_{2}O\cdots O=C=O]^{*})$$
(7)

Substitute (3) into (7):

$$k_{5}c^{3}[g-C_{3}N_{4}\cdots OH\cdots \overset{H}{O}\overset{C}{\sim}O]^{*}) = k_{2}K_{1}K_{2}c(^{1}g-C_{3}N_{4})c(H_{2}O)c(CO_{2})$$
(8)

For ${}^{3}[g-C_{3}N_{4}\cdots 2OH \cdots CO]^{*}$: $dc({}^{3}[g-C_{3}N_{4}\cdots 2OH \cdots CO]^{*})/dt = k_{5}c({}^{3}[g-C_{3}N_{4}\cdots OH \cdots {}^{H}O - \dot{C}]^{*})$ $-k_{6}c({}^{3}[g-C_{3}N_{4}\cdots 2OH \cdots CO]^{*}) + k_{-6}c({}^{3}g-C_{3}N_{4})c(OH \cdot)^{2}c(CO) = 0$ Then, $k_{5}c({}^{3}[g-C_{3}N_{4}\cdots OH \cdots {}^{H}O - \dot{C}]^{*}) = k_{6}c({}^{3}[g-C_{3}N_{4}\cdots 2OH \cdot \cdots CO]^{*})$

$$-k_{-6}c({}^{3}\text{g-C}_{3}\text{N}_{4}^{*})c(\text{OH}\cdot)^{2}c(\text{CO})$$
(9)

For the desorption of the product CO:

$$K_6 = c({}^3\text{g-C}_3\text{N}_4^*)c(\text{OH} \cdot)^2 c(\text{CO})/c({}^3\text{[g-C}_3\text{N}_4 \cdot \cdot \cdot \text{2OH} \cdot \cdot \cdot \text{CO}]^*)$$
(10)

Substitute (10) into (9):

$$k_{5}c({}^{3}[g-C_{3}N_{4}\cdots OH \cdots {}^{H}O^{-C}O]^{*}) = (k_{6}/K_{6}-k_{-6})c({}^{3}g-C_{3}N_{4}^{*})c(OH^{\bullet})^{2}c(CO)$$
(11)

For ${}^{1}g$ -C₃N₄ :

$$-dc({}^{1}g-C_{3}N_{4})/dt = k_{1}c({}^{1}g-C_{3}N_{4})c(H_{2}O)c(CO_{2})$$
$$-k_{-1}c({}^{1}[g-C_{3}N_{4}\cdots H_{2}O\cdots CO_{2}]) + k_{7}c({}^{3}g-C_{3}N_{4})^{*} = 0$$

Then,

$$k_7 c({}^3 \text{g-C}_3 \text{N}_4^*) = -k_1 c({}^1 \text{g-C}_3 \text{N}_4) c(\text{H}_2 \text{O}) c(\text{CO}_2) + k_{-1} c({}^1 [\text{g-C}_3 \text{N}_4 \cdots \text{H}_2 \text{O} \cdots \text{CO}_2])$$
(12)

Substitute (2) into (12):

$$k_7 c({}^3 \text{g-C}_3 \text{N}_4^*) = (k_1 - K_1 k_{-1}) c({}^1 \text{g-C}_3 \text{N}_4) c(\text{H}_2 \text{O}) c(\text{CO}_2)$$
(13)

For H_2O_2 :

$$dc(H_2O_2)/dt = k_8 c(OH)^2 - k_9 c(H_2O_2) + k_{-9} c(O_2)^{1/2} c(H_2O) = 0$$
(14)

For the equilibrium between H_2O_2 and O_2 :

$$k_9 c(H_2 O_2) = k_{-9} c(O_2)^{1/2} c(H_2 O)$$
 (15)

Substitute (15) into (14):

$$k_8 c (\text{OH} \cdot)^2 = (k_9 / K_9 - k_{-9}) c (\text{O}_2)^{1/2} c (\text{H}_2 \text{O})$$
(16)

Substitute (8) and (11) into both sides of (1):

$$-k_2K_1K_2c({}^{1}\text{g-C}_3\text{N}_4) dc(\text{H}_2\text{O}) dc(\text{CO}_2)/dt = (k_6/K_6 - k_{-6})c({}^{3}\text{g-C}_3\text{N}_4^{*})c(\text{OH} \cdot)^2c(\text{CO})$$

Then,

$$-dc(H_2O) dc(CO_2)/dt = (k_6/K_6 - k_{-6})/K_1K_2k_2c({}^3g-C_3N_4^*)c(OH \cdot)^2c(CO)/c({}^1g-C_3N_4) (17)$$

(The concentration of the catalyst 'c({}^1g-C_3N_4) is constant)

Substitute (13) into (17):

$$-dc(H_2O) dc(CO_2)/dt = \frac{k_1}{K_1 - k_{-1}} \frac{k_6}{K_6 - k_{-6}} \frac{K_2 k_2 k_7 c(CO) c(H_2O) c(CO_2) c(OH^{\bullet})^2}{(18)}$$

Then,

$$-dc(CO_2)/dt = (k_1/K_1 - k_{-1})(k_6/K_6 - k_{-6})/K_2k_2k_7c(CO) c(CO_2) c(OH^{\bullet})^2$$

(The concentration of $H_2O(c(H_2O))$ is a constant)

Substitute (16) into (18):

$$-dc(CO_2)/dt = (k_1/K_1 - k_{-1})(k_6/K_6 - k_{-6})(k_9/K_9 - k_{-9})/K_2k_2k_7k_8c(CO) c(CO_2) c(H_2O) c(O_2)^{1/2}$$
(19)

Combined $c(CO_2)$ and $c(H_2O)$ into the constant term:

$$-dc(CO_2)/dt = k' c(CO) c(O_2)^{1/2}$$

The CO₂RR is a first order reaction for the product CO.

References1 Y. L. Niu, Q. Peng, C. M. Deng, X. Gao and Z. G. Shuai, *J. Phys. Chem. A*, 2010, **114**, 7817–7831. 2 Q. Peng, Y.P. Yi, Z.G. Shuai and J.S. Shao, *J. Am. Chem. Soc.*, 2007, **129**, 9333–9339.3 Y.L. Niu, Q. Peng and Z.G. Shuai, *Sci. China, Ser. B*, 2008, **51**, 1153–1158.

4 Q. Peng, Y.L. Niu and Q. H. Shi, J. Chem. Theory. Comput., 2013, 9, 1132–1143.