Supporting Information for

An insight into the reaction mechanism of $\mathbf{C O}_{2}$ photoreduction catalyzed by atomically dispersed Fe atoms supported on graphitic carbon nitride

Zhengyan Zhao, Wei Liu, Yantao Shi*, Heming Zhang, Xuedan Song, Wenzhe Shang, Ce Hao*State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China

*Corresponding authors.

E-mail address: shiyantao@dlut.edu.cn (Y. Shi); haoce@dlut.edu.cn (C. Hao)

The formulas of the rate constants involved in the photophysical and photochemical processes

The rate constant of the fluorescence emission $\left(k_{\mathrm{F}}\right)^{1}$ can be calculated by the integration of the emission spectra based on Fermi's golden rule and the time-depended perturbation theory,

$$
k_{\mathrm{F}}(T)=\int \sigma_{\mathrm{em}}(\omega, T) \mathrm{d} \omega
$$

the $\sigma_{e m}(\omega, T)$ is written as ${ }^{1-2}$

$$
\left.\sigma_{e m}(\omega, T)=\frac{4 \omega^{3}}{3 \hbar c^{3}} \sum_{u, v} P_{\mathrm{iv}}(T)\left|\left\langle\Theta_{\mathrm{fu}}\right| \mu_{\mathrm{fi}}\right| \Theta_{\mathrm{iv}}\right\rangle\left.\right|^{2} \delta\left(\omega_{\mathrm{i} v, f u}-\omega\right)
$$

The rate constants of IC^{3} and ISC^{4} are calculated as follows:

$$
\begin{gathered}
\left.k_{\mathrm{IC}}=\frac{2 \pi}{\hbar} \sum_{u, v} P_{\mathrm{i} v}(T)\left|\sum_{n}\left\langle\Phi_{\mathrm{f}}\right| \widehat{P}_{n}\right| \Phi_{\mathrm{i}}\right\rangle\left.\left\langle\Theta_{\mathrm{fu} u}\right| \widehat{P}_{n}\left|\Theta_{\mathrm{i} v}\right\rangle\right|^{2} \delta\left(E_{\mathrm{i} v}-E_{\mathrm{fu}}\right) \\
\left.k_{\mathrm{ISC}}=\frac{2 \pi}{\hbar} \sum_{u, v} P_{\mathrm{iv}}(T)\left|\left\langle\Phi_{\mathrm{f}}\right| A^{S o}\right| \Phi_{\mathrm{i}}\right\rangle\left.\right|^{2}\left|\left\langle\Theta_{\mathrm{f} u} \mid \Theta_{\mathrm{i} v}\right\rangle\right|^{2} \delta\left(E_{\mathrm{i} v}-E_{\mathrm{f} u}\right)
\end{gathered}
$$

where ω is the circular frequency; T is the temperature; \hbar is the reduced Planck constant; c is the speed of light in vacuum; v and u are the vibrational quantum numbers of the initial state and the final state, respectively; P_{iv} is the Boltzmann distribution of the initial vibronic manifold; Θ is the vibrational wavefunction; i and f are the initial and the final state, respectively; μ_{fi} is the electric transition dipole moment from the initial electronic state to the final electronic state; and δ is the Dirac operator; Φ is the electronic state; \widehat{P}_{n} indicates the momentum operator of the nth normal vibrational mode in the final state; n is the index of normal vibrational modes; E represents the energy; and $\widehat{H}^{S O}$ denotes the Hamiltonian operator of spin-orbit coupling.

The reaction rate constant k_{R} of the photochemical process is calculated based on the transition state theory:

$$
\begin{gathered}
k_{\mathrm{R}}=k_{i} \frac{k_{\mathrm{B}} T}{h} \exp \left(-\frac{\Delta \mathrm{G}^{\ddagger}}{R T}\right) \\
k_{i}=1+\frac{1}{24}\left(\frac{\hbar v_{\mathrm{i}}}{k_{\mathrm{B}} T}\right)^{2}
\end{gathered}
$$

where k_{B} is the Boltzmann constant, ΔG^{\ddagger} is the Gibbs free energy, namely the difference in energies between the transition state and the reactant complex; R is the ideal gas constant; k_{i} is the transmission coefficient; and v_{i} is the imaginary frequency of the transition state.

Table S1 The blank experiments of CO_{2} photoreduction.

	Catalyst	Medium	Atmosphere	Irradiation time	CO
1	$\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	water	Ar	10 h	None
2	$\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	water	CO_{2}	Dark	None
3	None	water	CO_{2}	10 h	None

Fig. S1 (a) (b) Scanning electron microscopy images of $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$.

Fig. S2 (a) Fe K-edge k^{3}-weighted EXAFS oscillations $k^{3} \chi(k)$ of Fe-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ sample. The data of Fe foil, $\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and FePc are shown for reference (b) The fitting curves of k^{3}-weighted EXAFS spectra and (c) $k^{3} \chi(k)$ oscillations of Fe-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ sample using the ARTEMIS module of IFEFFIT.

Table S2 EXAFS fitting results for $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ sample using the ARTEMIS module of IFEFFIT.

Sample	Path	N	$R(\AA)$	$\sigma^{2}\left(10^{-3} \AA^{2}\right)$	$\Delta E_{0}(\mathrm{eV})$	R-factor
$\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	$\mathrm{Fe}-\mathrm{N}_{1}$	2.0	2.08	2.3	6.0	0.001
	$\mathrm{Fe}-\mathrm{N}_{2}$	2.2	2.19	2.3	6.0	

N, R, σ^{2}, and ΔE_{0} are the coordination number, interatomic distance, Debye-Waller factor, and shift in the edge energy.

Fig. S3 Fe $2 p$ XPS spectra of $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$.
(a)

(b)

Fig. S4 (a) N_{2} adsorption-desorption isotherms and (b) Barrett-Joyner-Halenda (BJH) pore size distribution curves of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and Fe-g- $\mathrm{C}_{3} \mathrm{~N}_{4}$ samples

Table S3 The BET surface areas, total pore volumes, and pore size of $g-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ samples.

	$\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	Fe-g-C C_{3}
$S_{\text {BET }}\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	9.17	9.07
$V_{\text {pore }}\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	0.06	0.05
Pore size (nm)	17.31	16.03

Fig. S5 Spectrum of the 300 W xenon lamp used in this work.

The calculation of quantum efficiency of CO_{2} reduction is given as follows. A fiber optic spectrometer (CEL-P4000, Ceaulight) was used for light source spectrum. The light intensity was charactered by an optical power meter (CEL-NP2000, Ceaulight, Beijing). The irradiated area for the reaction is $35.26 \mathrm{~cm}^{2}(6.7 \mathrm{~cm}$ radius). The calculation of the apparent quantum yield (AQY) is defined as:

$$
\begin{gathered}
\mathrm{AQY}(\%)=\frac{2 \times \text { the number of produced CO molecules }}{\text { the number of incident photons }} \times 100 \%=\frac{N e}{N q} \\
N e=2 \times N_{A} \times n \\
N q=S \times t \times \int_{200}^{1000} N d \lambda \\
N=\frac{P \times \lambda}{h \times c}
\end{gathered}
$$

$N e$ is the total number of transfer electrons in the reaction, N_{A} is the Avogadro constant $\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right), \mathrm{n}(\mathrm{in} \mathrm{mol})$ is the amount of products produced by 1 g photocatalyst. $N q$ is the number of integrated photons with a wavelength from 200 nm to $1000 \mathrm{~nm}, S$ is the irradiation area, t is the photo-irradiation time (s), N is the number of incident photons, P is the irradiation energy, λ is the wavelength $(\mathrm{nm}), h$ is the planck constant $\left(h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right), c$ is the speed of light $\left(c=3 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$. The calculated

AQY of g-C3 N_{4} and $\mathrm{Fe}-\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ are $2.0 \times 10^{-5} \%$ and $3.8 \times 10^{-5} \%$, respectively.

Complex

Complex-3

Complex-6

Complex-1

Complex-4

Complex-7

Complex-2

Complex-5

Complex-8

Fig. S6 g-C ${ }_{3} \mathrm{~N}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ formed different hydrogen-bonded complexes at different binding sites, the optimized structures of the nine hydrogen-bonded complexes were given.

Fig. S7 Fe-g-C $\mathrm{C}_{3} \mathrm{~N}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ formed different hydrogen-bonded complexes at different binding sites, the optimized structures of the four hydrogen-bonded complexes were given.

Table S4 The relative energies of the different hydrogen-bonded complexes.

Structures	Relative energies $(\mathrm{kal} / \mathrm{mol})$	Structures	Relative energies $(\mathrm{kal} / \mathrm{mol})$
Complex	0.0	Fe-Complex	0
Complex-1	0.4	Fe-Complex-1	5.6
Complex-2	2.2	Fe-Complex-2	14.5
Complex-3	2.4	Fe-Complex-3	16.4
Complex-4	3.8		
Complex-5	4.6		
Complex-6	5.9		
Complex-7	6.8		
Complex-8	8.5		

Reaction coordinate
Fig. S8 The photochemical reaction path (Path-2) of CO_{2} reduction for Complex.

Reaction coordinate
Fig. S9 The photochemical reaction path (Path-3) of CO_{2} reduction for Complex.

Fig. S10 The optimized structures of Fe-Complex in the (a) triplet state and (b) quintet state.

Table S5 The relative energies of the structures for Fe-Complex in the triplet and quintet states.

(unit: kcal/mol).		
Triplet state	Quintet state	
Relative energies	9.75	0.00

Fig. S11 The photochemical reaction path (Path-2) of CO_{2} reduction for Fe -Complex in the triplet (red) and quintet (green) states.

The reaction order is derived as follows:

The total reaction rate is determined by the rate of the rate-limiting step:

$$
\begin{equation*}
r=-\mathrm{d} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdots \cdot{ }^{\mathrm{H}}{ }_{\mathrm{O}}-\dot{\mathrm{C}} \approx_{\mathrm{O}}\right]^{*}\right) / \mathrm{d} t=k_{5} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdots{ }^{\mathrm{H}}{ }_{\mathrm{O}}-\dot{\mathrm{C}} \approx_{\left.\mathrm{O}]^{*}\right)}\right)\right. \tag{1}
\end{equation*}
$$

For the absorption equilibrium formed by $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and the catalyst :

$$
\begin{equation*}
K_{1}=k_{1} / k_{-1}=c\left({ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]\right) / c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right) \tag{2}
\end{equation*}
$$

For the equilibrium between ${ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]^{*}$ and ${ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]$:
$K_{2}=c\left({ }^{1}\left[g-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]^{*}\right) / c\left({ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]\right)$
Then, $c\left({ }^{1}\left[\mathrm{~g}^{\left.\left.-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]^{*}\right)=K_{1} K_{2} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right) .}\right.\right.$
For ${ }^{3}\left[g-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{+} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}^{2} \stackrel{\dot{\mathrm{C}}}{{ }^{-}} \mathrm{O}^{-}\right]^{*}$:

$$
\begin{array}{r}
\mathrm{d} c\left({ } ^ { 3 } \left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{+} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}^{\prime} \stackrel{\dot{\mathrm{C}}}{\left.\left.\mathrm{O}^{-}\right]^{*}\right) / \mathrm{d} t=k_{2} c\left({ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]^{*}\right)}\right.\right. \\
-k_{3} c\left(\left(^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}^{+} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}^{\prime} \xlongequal{\dot{\mathrm{C}}} \approx_{\left.\left.\mathrm{O}^{-}\right]^{*}\right)=0}\right)\right.\right.
\end{array}
$$

For ${ }^{3}\left[\mathrm{~g}_{-\mathrm{C}}^{3} \mathrm{~N}_{4}-\mathrm{H}^{\delta+} \ldots \mathrm{OH} \cdots \mathrm{O}=\dot{\mathrm{C}} \approx_{\mathrm{O}^{\delta-}}\right]^{*}$:

For ${ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdot \cdots{ }^{\mathrm{H}} \mathrm{O}^{-}-\dot{\mathrm{C}}_{\mathrm{s}_{\mathrm{O}}}\right]^{*}$:
$\mathrm{d} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdots{ }^{\mathrm{H}}{ }_{\mathrm{O}}-\dot{\mathrm{C}}_{\mathrm{s}_{\mathrm{O}}}\right]^{*}\right) / \mathrm{d} t=k_{4} c({ }^{3}[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}-\mathrm{H}^{\delta+} \ldots \mathrm{OH} \cdot \cdots \mathrm{O}^{\prime} \dot{\mathrm{C}}_{\overbrace{\mathrm{O}^{\delta-}}]^{*})}$

Combining (4), (5) and (6),

$$
\begin{equation*}
k_{5} c((^{3}[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdot \cdots{ }^{\mathrm{H}} \widehat{\mathrm{O}}-\dot{\mathrm{C}}_{\overbrace{\mathrm{O}}}]^{*})=k_{2} c\left(\left(^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{O}=\mathrm{C}=\mathrm{O}\right]^{*}\right)\right. \tag{7}
\end{equation*}
$$

Substitute (3) into (7):

$$
\begin{equation*}
k_{5} c^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdots{ }^{\mathrm{H}}{ }_{\mathrm{O}}-\dot{\mathrm{C}}_{\left.\left.\left.\mathrm{S}_{\mathrm{O}}\right]^{*}\right)=k_{2} K_{1} K_{2} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right), ~()^{2}\right)}\right. \tag{8}
\end{equation*}
$$

For ${ }^{3}\left[g-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots 2 \mathrm{OH} \cdot \cdots \mathrm{CO}\right]^{*}$:

$$
\mathrm{d} c\left({ } ^ { 3 } \left[\mathrm{~g}^{\left.\left.-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots 2 \mathrm{OH} \cdot \cdots \mathrm{CO}\right]^{*}\right) / \mathrm{d} t=k_{5} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdot \cdots{ }^{\mathrm{H}}{ }_{\mathrm{O}}-\dot{\mathrm{C}}_{\left.\left.\mathrm{s}_{\mathrm{O}}\right]^{*}\right)}\right),{ }^{*}\right)}\right.\right.
$$

$$
-k_{6} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots 2 \mathrm{OH} \cdot \cdots \mathrm{CO}\right]^{*}\right)+k_{-6} c\left(\left(^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right) c(\mathrm{OH} \cdot)^{2} c(\mathrm{CO})=0\right.
$$

Then, $k_{5} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{OH} \cdots{ }^{\mathrm{H}_{\}}{ }_{\mathrm{O}}-\dot{\mathrm{C}}_{\mathrm{S}_{\mathrm{O}}}\right]^{*}\right)=k_{6} c\left({ }^{3}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots 2 \mathrm{OH} \cdot \cdots \mathrm{CO}\right]^{*}\right)$

$$
\begin{equation*}
-k_{-6} c\left({ }^{3} \mathrm{~g}_{-} \mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right) c(\mathrm{OH} \cdot)^{2} c(\mathrm{CO}) \tag{9}
\end{equation*}
$$

For the desorption of the product CO:

$$
\begin{equation*}
K_{6}=c\left({ }^{3} \mathrm{~g}_{-} \mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right) c(\mathrm{OH} \cdot)^{2} c(\mathrm{CO}) / c\left({ } ^ { 3 } \left[\mathrm{~g}_{\left.\left.-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots 2 \mathrm{OH} \cdot \cdots \mathrm{CO}\right]^{*}\right)}\right.\right. \tag{10}
\end{equation*}
$$

Substitute (10) into (9):

$$
\begin{aligned}
& -k_{4} c({ }^{3}[\mathrm{~g}_{-} \mathrm{C}_{3} \mathrm{~N}_{4}-\mathrm{H}^{\delta+} \cdots \mathrm{OH} \cdots \mathrm{O}^{\prime \prime} \stackrel{\dot{\mathrm{C}}}{\overbrace{\mathrm{O}^{\delta-}}]^{*})=0}
\end{aligned}
$$

For ${ }^{1}{ }^{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$:

$$
\begin{aligned}
-\mathrm{d} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) / \mathrm{d} t & =k_{1} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right) \\
& -k_{-1} c\left({ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{CO}_{2}\right]\right)+k_{7} c\left({ }^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right)=0
\end{aligned}
$$

Then,

$$
\begin{equation*}
k_{7} c\left({ }^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right)=-k_{1} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right)+k_{-1} c\left({ }^{1}\left[\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4} \cdots \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{CO}_{2}\right]\right) \tag{12}
\end{equation*}
$$

Substitute (2) into (12):

$$
\begin{equation*}
k_{7} c\left({ }^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right)=\left(k_{1}-K_{1} k_{-1}\right) c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right) \tag{13}
\end{equation*}
$$

For $\mathrm{H}_{2} \mathrm{O}_{2}$:

$$
\begin{equation*}
\mathrm{d} c\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) / \mathrm{d} t=k_{8} c(\mathrm{OH} \cdot)^{2}-k_{9} c\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)+k_{-9} c\left(\mathrm{O}_{2}\right)^{1 / 2} c\left(\mathrm{H}_{2} \mathrm{O}\right)=0 \tag{14}
\end{equation*}
$$

For the equilibrium between $\mathrm{H}_{2} \mathrm{O}_{2}$ and O_{2} :

$$
\begin{equation*}
k_{9} c\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=k_{-9} c\left(\mathrm{O}_{2}\right)^{1 / 2} c\left(\mathrm{H}_{2} \mathrm{O}\right) \tag{15}
\end{equation*}
$$

Substitute (15) into (14):

$$
\begin{equation*}
k_{8} c(\mathrm{OH} \cdot)^{2}=\left(k_{9} / K_{9}-k_{-9}\right) c\left(\mathrm{O}_{2}\right)^{1 / 2} c\left(\mathrm{H}_{2} \mathrm{O}\right) \tag{16}
\end{equation*}
$$

Substitute (8) and (11) into both sides of (1):
$-k_{2} K_{1} K_{2} c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) \mathrm{d} c\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=\left(k_{6} / K_{6}-k_{-6}\right) c\left({ }^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right) c(\mathrm{OH} \cdot)^{2} c(\mathrm{CO})$
Then,

$$
\begin{equation*}
-\mathrm{d} c\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=\left(k_{6} / K_{6}-k_{-6}\right) / K_{1} K_{2} k_{2} c\left({ }^{3} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}{ }^{*}\right) c(\mathrm{OH} \cdot)^{2} c(\mathrm{CO}) / c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right) \tag{17}
\end{equation*}
$$

(The concentration of the catalyst $c\left({ }^{1} \mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}\right)$ is constant)
Substitute (13) into (17):

$$
\begin{equation*}
-\mathrm{d} c\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=\left(k_{1} / K_{1}-k_{-1}\right)\left(k_{6} / K_{6}-k_{-6}\right) / K_{2} k_{2} k_{7} c(\mathrm{CO}) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{CO}_{2}\right) c(\mathrm{OH} \cdot)^{2}(18 \tag{18}
\end{equation*}
$$

Then,

$$
-\mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=\left(k_{1} / K_{1}-k_{-1}\right)\left(k_{6} / K_{6}-k_{-6}\right) / K_{2} k_{2} k_{7} c(\mathrm{CO}) c\left(\mathrm{CO}_{2}\right) c(\mathrm{OH} \cdot)^{2}
$$

(The concentration of $\mathrm{H}_{2} \mathrm{O}\left(c\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$ is a constant)
Substitute (16) into (18):

$$
\begin{equation*}
-\mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=\left(k_{1} / K_{1}-k_{-1}\right)\left(k_{6} / K_{6}-k_{-6}\right)\left(k_{9} / K_{9}-k_{-9}\right) / K_{2} k_{2} k_{7} k_{8} c(\mathrm{CO}) c\left(\mathrm{CO}_{2}\right) c\left(\mathrm{H}_{2} \mathrm{O}\right) c\left(\mathrm{O}_{2}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

Combined $c\left(\mathrm{CO}_{2}\right)$ and $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ into the constant term:
$-\mathrm{d} c\left(\mathrm{CO}_{2}\right) / \mathrm{d} t=k^{\prime} c(\mathbf{C O}) c\left(\mathrm{O}_{2}\right)^{1 / 2}$

The $\mathrm{CO}_{2} \mathrm{RR}$ is a first order reaction for the product CO .

References1 Y. L. Niu, Q. Peng, C. M. Deng, X. Gao and Z. G. Shuai, J. Phys. Chem. A, 2010, 114, 7817-7831. 2 Q. Peng, Y.P. Yi, Z.G. Shuai and J.S. Shao, J. Am. Chem. Soc., 2007, 129, 9333-9339.3 Y.L. Niu, Q. Peng and Z.G. Shuai, Sci. China, Ser. B, 2008, 51, 1153-1158.
4 Q. Peng, Y.L. Niu and Q. H. Shi, J. Chem. Theory. Comput., 2013, 9, 1132-1143.

