RADICAL PAIR FORMATION DUE TO COMPRESSION-INDUCED ELECTRON TRANSFER IN CRYSTALS OF ENERGETIC SALTS

Sergey V. Bondarchuk

Department of Chemistry and Nanomaterials Science,

Bogdan Khmelnitsky Cherkasy National University,

blvd. Shevchenko 81, 18031 Cherkasy, Ukraine.

Tel: (+3) 80472 37-65-76;

Fax: (+3) 80472 37-21-42;

E-mail: bondchem@cdu.edu.ua

Phys. Chem. Chem. Phys.

LIST OF SUPPLEMENTARY FIGURES AND TABLES:

Fig. S1. Chemical formulas and full names of the salts studied	S3
Fig. S2. Crystal structures of the salts studied	S4
Table S1. The calculated and experimental (in parentheses) asymmetric cell parameters of the salts studied	S7
Table S2. The relative errors $\delta = (V_{theor} - V_{exper})/V_{exper}$ of the asymmetric cell volumes estimation	S9
Table S3. The Mulliken (M) and Hirshfeld (H) partial charges (<i>e</i> ⁻) at different pressures along with the frontier molecular orbitals energies (eV)	S10
Table S4. Decomposition equations applied for the calculations of the stored energy content (E_c)	S11
Fig. S3. NH_4 • radicals before (a) and after (b) MD simulation at ambient conditions	S12
Fig. S4. Crystal structures along with the optimized and experimental (in parentheses) asymmetric cell parameters of salts 66-76	S13
Table S5. Hirshfeld charges (e^{-}) of the cation in the NH ₄ X and XN ₃ series at various pressures along with conceptual DFT parameters (eV) of the corresponding radicals (X•) obtained in terms of the adiabatic approximation	S14
Fig. S5. Dependence of conceptual DFT parameters (χ , η and ω) on cationic charges at 100 GPa (q_{100}) for the NH ₄ X and XN ₃ series salts.	S14
Table S6. The frontier molecular orbital energies and conceptual DFT parameters (in eV) obtained in terms of the vertical approximation	S15
Table S7. The frontier molecular orbital energies and conceptual DFT parameters (in eV) obtained in terms of the adiabatic approximation	S16
Fig. S6. Efficiency of various conceptual DFT parameters in distinguishing of compounds with the positive and negative energy content	S18

Fig. S1. Chemical formulas and full names of the salts studied.

Fig. S2. Crystal structures of the salts studied.

Fig. S2. Continue. S5

Fig. S2. Continue. S6

Crystal	Space group	а	b	С	α	β	γ
1	$Fm\overline{3}m$	5.672 (5.640)					
2	$Fm\overline{3}m$	6.597 (6.597)					
3	$Pm\overline{3}m$	3.954 (4.010)					
4	<i>P</i> 3 ₁ 2 ₁	5.053 (4.942)		11.092 (10.945)			
5	$R\overline{3}c$	6.351 (6.375)		× ,	46.5 (46.1)		
6	$P2_{1}/n$	5.276 (5.402)	5.546 (5.596)	7.534 (7.756)		90.9 (90.3)	
7	Amma	7.016 (6.991)	7.012 (6.996)	6.326 (6.238)		104.0	
8	C2/m	8.804 (8.825)	5.288 (5.194) 5.224	5.921 (5.953) 2.442		104.8 (101.8)	
9 10	PZ_1/a	(10.350)	(5.260) 4 972	(3.460) 6.111		(92.9) 114 5	
11	$P2_{1}2_{1}2_{1}$	(8.359) 9.488	(4.973) 10.455	(6.198) 9.109		(114.8)	
12	$P2_1$	(9.631) 7.337	(10.573) 5.366	(9.215) 10.747		103.9	
13	<i>P</i> 1	(7.347) 4.840	(5.435) 5.911	(11.034) 8.880	76.0	(103.9) 81.6	71.5
14	$Fm\overline{3}m$	(4.856) 5.863 (5.930)	(5.850)	(8.795)	(76.5)	(81.5)	(71.4)
15	$Cmc2_1$	(0.930) 10.892 (10.904)	18.429 (18.455)	6.362 (6.421)			
16	$P\overline{1}$	7.489 (7.509)	7.572 (7.546)	13.611 (13.672)	78.6 (78.6)	76.7 (75.7)	75.3 (75.6)
17	$P\overline{1}$	6.770 (6.743)	7.826 (7.805)	10.154 (10.066)	89.8 (90.4)	99.2 (98.8)	113.9 (114.1)
18	$P2_{1}2_{1}2_{1}$	5.698 (5.662)	10.293 (10.283)	16.382 (16.258)			
19	P1	6.766 (6.709)	11.381 (11.255)	15.394 (15.214)	75.1 (75.5)	79.4 (79.3)	75.5 (75.7)
20	P1	(3.824)	7.093 (6.967) 8.441	9.670 (9.920) 14.289	82.4 (80.5) 102.8	90.6 (88.7) 96.4	86.1 (79.5)
21	PI \overline{PI}	(3.655) 3.628	(8.436) 8 020	(14.338)	(103.6)	90.4 (96.6) 91.8	(93.3) 96.5
23	$P\overline{1}$	(3.606) 6.764	(8.019) 7.092	(14.798) 8.070	(105.1) 84.3	(91.7) 75.0	(96.0) 84.6
24	$P\overline{1}$	(6.785) 7.199	(7.137) 7.429	(7.965) 10.679	(85.1) 82.2	(74.0) 76.6	(84.9) 68.5
25	$P\overline{1}$	(7.209) 7.288	(7.462) 7.181	(10.775) 7.909	(81.3) 65.8	(76.5) 63.1	(67.6) 66.1
26	$P\overline{1}$	(7.175) 5.280	(7.202) 6.343	(7.856) 8.228	(66.1) 105.4	(65.3) 97.6	(68.5) 112.3
27	Рсса	(5.345) 9.488 (9.399)	(6.363) 3.956 (3.954)	(8.300) 10.353 (10.362)	(105.9)	(98.2)	(111.5)

Table S1. The calculated and experimental (in parentheses) asymmetric cell parameters of the salts studied.

Table S1. C	ontinue.
-------------	----------

Crystal	Space group	а	Ь	С	α	β	γ
28	$P2_{1}/c$	6.554	12.076	5.369		97.9 (97.8)	
29	$P\overline{1}$	5.315	7.128	10.174	100.6	103.9	103.7
30	$P2_1/c$	(5.298) 3.630	(7.156) 14 796	(10.106) 11 443	(100.0)	(104.1) 90.8	(104.1)
00	121/0	(3.685)	(14.638)	(11.575)		(90.3)	
31	Pban	9.123	10.691	3.669			
32	$P\overline{1}$	3.353	7.368	7.490	83.2	86.5	80.4
22	D 1	(3.368)	(7.362)	(7.501)	(82.9)	(87.1)	(80.8)
55	P1	(5.681)	(6.451)	(8.355)	(100.3)	(97.3)	(111.8)
34	$P2_{1}/c$	3.836	11.347	9.750		93.6	
35	$P2_{1}/c$	(3.851) 4.051	(11.316) 11.355	(9.735) 9.990		(93.0) 94.6	
• -	~	(4.088)	(11.328)	(9.948)		(93.5)	
36	$C222_{1}$	15.050	4.860 (4.928)	9.011 (9.044)			
37	$P\overline{1}$	7.417	7.876	9.272	89.3	74.0	88.7
38	$\overline{D_1}$	(7.440) 3 630	(8.162) 10.997	(9.259) 13.276	(88.6) 107.4	(73.7) 94.6	(88.9) 98.6
50	<i>P</i> 1	(3.648)	(10.984)	(13.201)	(107.2)	(95.4)	(99.1)
39	$P\overline{1}$	7.336	8.853	10.809	105.1	94.9	108.7
40	$P2_{1}/n$	9.322	(9.047) 7.865	13.152	(103.0)	(94.3) 107.8	(108.9)
41		(9.255)	(7.800)	(13.135)		(107.9)	
41	$P2_1/c$	5.527 (5.426)	(11.660)	6.480 (6.501)		96.10 (95.26)	
42	$P2_1$	8.516	6.163	9.507		100.9	
43	$P2_{1}/c$	(8.484) 8.764	(6.144) 6.132	(9.439) 12.401		(100.6) 110.0	
		(8.527)	(6.265)	(12.760)		(112.0)	
44	$P\overline{1}$	6.796 (6.771)	7.639	8.737 (8.712)	96.6 (96.5)	101.7	115.5
45	Pnma	8.859	6.043	7.241	()0.5)	(101.))	(115.0)
16	<u>51</u>	(9.130)	(5.790) 10.776	(7.470)	81.8	76 /	817
40	P1	(6.691)	(10.822)	(12.259)	(85.2)	(76.7)	(84.7)
47	$P2_{1}/n$	9.758	7.062	18.405		97.9	
48	C2/c	(9.088) 18.570	8.268	12.572		(98.0) 131.4	
40		(18.761)	(8.292)	(12.498)		(131.3)	
49	C2/c	(12.031)	(7.401)	(9.981)		(109.4)	
50	$P\overline{1}$	7.724	9.367	10.495	93.8	104.4	99.8
51	$P\overline{1}$	(7.691) 8 747	(9.290) 10 374	(10.564) 10.661	(94.5) 79.0	(104.2) 86.0	(100.4) 72.2
	1 1	(8.882)	(10.251)	(10.718)	(78.1)	(83.7)	(71.3)
52	$P\overline{1}$	7.118	8.205 (8.131)	9.176 (9.057)	83.7 (83.4)	71.2	73.0
53	$P\overline{1}$	8.262	8.374	10.743	89.3	109.5	117.5
E A		(7.972)	(8.192)	(10.269)	(90.4)	(110.2)	(115.5)
54	<i>P</i> 1	(5.242)	(6.769)	0.470 (8.400)	90.9 (96.4)	(89.2)	97.9 (97.5)
55	$P\overline{1}$	5.065	10.742	11.565	65.3	77.7	85.8
		(5.113)	(10.676)	(11.579)	(66.3)	(78.5)	(84.9)

Table S1. Continue.

Crystal	Space group	а	b	С	α	β	γ
56	<i>C</i> 2/ <i>m</i>	5.602 (5.627)	3.282 (3.319)	4.854 (4.979)		104.1 (107.4)	
57	I4/mcm	6.131 (6.208)		7.591 (7.355)			
58	Ibam	6.186 (5.617)	5.366 (5.915)	6.364 (6.006)			
59	$P\overline{4}3m$	3.806 (3.860)					
60	$Pmn2_1$	5.971 (6.040)	4.813 (5.050)	6.202 (6.040)			
61	C2/m	10.805 (10.763)	9.046 (9.076)	6.811 (6.635)		96.7 (95.4)	
62	C2/c	11.818 (11.762)	8.667 (8.628)	17.591 (17.604)		108.6 (107.5)	
63	$P\overline{3}m1$	3.688 (3.642)		8.019 (8.311)			
64	$Pa\overline{3}$	5.317 (5.428)					
65	$P\overline{1}$	5.356 (5.303)	7.077 (7.063)	8.621 (8.568)	66.5 (66.8)	86.3 (86.7)	71.1 (70.0)

Table S2. The relative errors $\delta = (V_{theor} - V_{exper})/V_{exper}$ of the asymmetric cell volumes estimation.

Salt	V_{theor} (Å ³)	V_{exper} (Å ³)	δ (%)	Salt	V_{theor} (Å ³)	V_{exper} (Å ³)	δ (%)
1	182.48	179.41	1.71	34	423.55	423.65	-0.02
2	287.10	287.10	0.00	35	458.05	459.82	-0.38
3	61.82	64.48	-4.13	36	659.09	675.31	-2.40
4	283.21	267.31	5.95	37	520.51	539.45	-3.51
5	123.07	122.72	0.29	38	495.64	493.36	0.46
6	220.42	234.46	-5.99	39	630.95	639.35	-1.31
7	311.22	305.09	2.01	40	918.12	902.31	1.75
8	266.51	267.10	-0.22	41	410.36	409.57	0.19
9	189.03	188.12	0.48	42	489.97	483.62	1.31
10	231.39	233.89	-1.07	43	626.26	632.03	-0.91
11	903.59	938.35	-3.70	44	390.27	385.38	1.27
12	410.73	427.70	-3.97	45	387.65	394.88	-1.83
13	233.10	229.52	1.56	46	837.34	858.38	-2.45
14	201.54	208.53	-3.35	47	1256.27	1257.16	-0.07
15	1277.04	1292.12	-1.17	48	1447.96	1460.71	-0.87
16	718.54	719.40	-0.12	49	862.20	838.27	2.85
17	484.41	476.49	1.66	50	720.04	713.73	0.88
18	960.80	946.58	1.50	51	904.08	903.47	0.07
19	1099.94	1068.31	2.96	52	485.07	475.31	2.05
20	272.48	256.29	6.32	53	612.48	558.43	9.68
21	420.96	425.21	-1.00	54	286.79	293.67	-2.34
22	412.37	410.15	0.54	55	558.44	567.10	-1.53
23	371.13	368.54	0.70	56	86.56	88.73	-2.45
24	516.10	519.82	-0.72	57	285.34	283.46	0.66
25	324.17	327.54	-1.03	58	211.25	199.55	5.86
26	237.27	243.11	-2.40	59	55.13	57.51	-4.14
27	388.59	385.09	0.91	60	178.24	184.23	-3.25
28	420.90	423.36	-0.58	61	661.18	645.27	2.47
29	351.47	349.18	0.66	62	1707.69	1703.83	0.23
30	614.54	624.37	-1.57	63	109.07	110.24	-1.06
31	357.85	360.24	-0.66	64	150.31	159.93	-6.02
32	181.00	182.10	-0.60	65	282.72	276.06	2.41
33	271.21	273.38	-0.79				

Table S3. The Mulliken (M) and Hirshfeld (H) partial charges (e⁻) at different pressures along with the frontier molecular orbitals energies (eV).

G 1.	0 0	GPa	20 0	GPa	50 0	GPa	100	GPa	An	ion	Cat	ion
Salt	М	Н	М	Н	М	Н	М	Н	$E_{\rm HOMO}$	ELUMO	EHOMO	$E_{\rm LUMO}$
1	0 (21	0.210	0.505	0.170	0.5(5	0.170	0.525	0.190	0.7(0	5.80	-30.53	-6.98
1	0.021	0.210	0.393	0.170	0.303	0.170	0.323	0.180	-0.709	1.01	-57.55	-0.90
23	0.713 0.714	0.230	0.707	0.190	0.007	0.170	0.675	0.170	-0.800	4.01	-20.75	-0.00
3	0.714	0.200	0.081	0.194	0.005	0.200	0.031	0.203	0.020 0.021	4.79	-52.00	-11.90
5	0.010	0.195	0.000	0.175	0.040	0.100	0.720	0.149	5 701	0.00	-100.40	-32.38
5	0.793	0.195	0.004	0.100	0.051	0.140	0.009	0.150	5 012	10.34	-40.10	-6.08
7	0.795	0.181	0.022	0.202	0.052	0.239	1 000	0.200	3 606	8 33	-45.15	-14 24
8	0.050	0.101	0.920	0.157	0.987	0.120	1.000	0.100	5 791	9.00	-39 53	-6.98
9	0.750	0.270	0.705	0.202	0.710	0.237	0 740	0.203	3 685	8 11	-39 53	-6.98
10	1 062	0.190	1 218	0.150	1 373	0.128	1.510	0.113	5 791	9.00	-64 01	-6.93
11	0.750	0.220	0.705	0.120	0.710	0.107	0.740	0.100	1.523	6.38	-45.15	-14.24
12	1.062	0.290	1.217	0.260	1.373	0.257	1.397	0.270	4.891	8.89	-39.53	-6.98
13	1.230	0.260	1.721	0.250	1.979	0.249	2.310	0.241	-3.467	2.43	-39.53	-6.98
14	0.600	0.270	0.530	0.220	0.440	0.190	0.310	0.170	5.643	9.25	-28.28	-16.70
15	0.912	0.312	0.960	0.232	1.008	0.210	1.058	0.192	-1.204	4.42	-26.73	-6.00
16	0.861	0.600	0.686	0.510	0.510	0.419	0.286	0.296	-2.326	2.28	-13.18	-8.75
17	0.700	0.280	0.570	0.130	0.460	0.070	0.350	0.010	-0.769	5.89	-13.08	-7.86
18	0.792	0.383	0.733	0.188	0.690	0.100	0.600	0.000	-1.204	4.42	-13.08	-7.86
19	0.830	0.364	0.784	0.136	0.744	0.027	0.719	-0.085	-2.905	1.93	-13.08	-7.86
20	0.665	0.275	0.641	0.151	0.615	0.095	0.565	0.045	1.521	6.59	-22.46	-6.36
21	0.742	0.299	0.672	0.145	0.643	0.057	0.678	0.022	1.879	7.17	-14.16	-6.01
22	0.650	0.232	0.590	0.112	0.567	0.042	0.545	-0.005	1.879	7.17	-15.97	-6.38
23	0.773	0.343	0.725	0.163	0.690	0.080	0.688	0.010	-2.483	1.12	-22.46	-6.36
24 25	0.830	0.185	0.890	0.045	0.945	-0.005	1.005	-0.035	1.362	7.31	-39.53	-6.98
25 26	0.750	0.308	0.646	0.10/	0.614	0.032	0.652	0.012	-1.204	4.42	-12.25	-6.46
20	0.820	0.125	0.830	0.021	0.835	-0.040	0.880	-0.085	1.045	7.08	-04.01	-0.95
27	0.750	0.310	0.000	0.113	0.033	0.040	0.723	0.003	-3.093	5.07	-22.40	-0.30
20	0.794	0.334	0.730	0.140	0.762	0.080	0.760	0.040	-3.095	5.07	-14.10	-0.01
30	1.852	0.187	1 579	0.150	1 367	-0.023	1 100	-0.034	-3.095	5.07	-12.02	-6.38
31	0.675	0.107	0.620	0.020	0.655	0.023	0.645	0.015	1 362	7 31	-22.46	-6.36
32	0.836	0.134	0.820	0.024	0.816	-0.030	0.850	-0.070	1.362	7.31	-64.01	-6.93
33	0.794	0.165	0.817	0.045	0.862	-0.005	0.932	-0.035	1.645	7.08	-39.53	-6.98
34	0.910	0.216	0.996	0.116	1.056	0.056	1.120	0.024	1.362	7.31	-26.73	-6.00
35	0.940	0.234	1.010	0.124	1.090	0.066	1.160	0.016	1.362	7.31	-22.91	-5.50
36	0.819	0.420	0.689	0.221	0.560	0.130	0.411	0.041	-0.769	5.89	-12.59	-8.18
37	0.665	0.162	0.610	0.043	0.612	-0.006	0.591	-0.050	1.362	7.31	-32.66	-11.98
38	0.757	0.304	0.734	0.141	0.731	0.051	0.824	-0.001	-2.483	1.12	-12.77	-4.66
39	0.730	0.270	0.660	0.066	0.666	0.030	0.676	0.014	-4.350	-0.75	-26.73	-6.00
40	0.804	0.337	0.745	0.134	0.730	0.047	0.725	-0.032	0.970	4.98	-22.46	-6.36
41	0.730	0.265	0.695	0.130	0.650	0.075	0.635	0.025	1.645	7.08	-15.97	-6.38
42	0.860	0.310	0.791	0.014	0.744	-0.114	0.740	-0.210	-4.044	0.05	-16.45	-5.41
43	0.795	0.342	0.770	0.170	0.765	0.075	0.740	-0.008	-1.204	4.42	-12.02	-4.99
44	0.080	0.210	0.084	0.107	0.000	0.005	0.690	0.037	-0./10	4.20	-15.89	-13.70
45	0.810	0.333	0.705	0.120	0.037	-0.003	0.015	-0.083	-5.002	4.29	-22.40	-0.30
40	0.714	0.210	0.038	-0.042	0.004	-0.124	0.378	-0.204	-4.370	-0.01	-17.46	-3.25
48	0.745	0.205	0.001 0.747	0.070	0 727	-0.020	0.706	-0 114	1.052	∠9 5.52	-17.40	-4 33
49	0 790	0 334	0.747	0.166	0 720	0.020	0.682	0.018	1 168	5 52	-22.46	-6 36
50	0.803	0.361	0.759	0.134	0.755	0.041	0.755	-0.035	-1.244	3.24	-22.46	-6.36
51	0.807	0.319	0.737	0.062	0.784	-0.018	0.826	-0.080	-1.244	3.24	-13.39	-5.21
52	0.707	0.280	0.645	0.125	0.638	0.047	0.632	0.033	0.388	5.10	-15.97	-6.38
53	0.695	0.285	0.628	0.120	0.615	0.095	0.710	0.078	1.166	4.38	-11.67	-4.79
54	0.730	0.270	0.660	0.066	0.666	0.030	0.676	0.014	-0.502	4.35	-15.97	-6.38
55	0.845	0.325	1.414	0.304	1.395	0.180	1.340	0.035	-4.168	0.12	-12.09	-3.97

Table S3. Continue.

C alt	0 GPa		20 GPa		50	50 GPa		100 GPa		Anion		Cation	
San	М	Н	М	Н	М	Н	М	Η	$E_{\rm HOMO}$	$E_{\rm LUMO}$	$E_{\rm HOMO}$	E_{LUMO}	
56	1.030	0.130	1.080	0.098	1.130	0.090	1.183	0.080	-0.04	6.12	-64.01	-6.93	
57	0.700	0.320	0.730	0.230	0.820	0.220	1.120	0.303	-0.04	6.12	-17.08	-7.83	
58	0.623	0.268	0.600	0.250	0.630	0.248	0.683	0.273	-0.04	6.12	-17.15	-10.66	
59	0.700	0.257	0.568	0.078	0.468	-0.010	0.372	-0.080	-0.77	5.89	-22.46	-6.36	
60	0.710	0.269	0.441	-0.079	0.511	-0.020	0.439	-0.079	-0.77	5.89	-17.12	-5.90	
61	0.710	0.258	0.559	0.061	0.449	-0.041	0.331	-0.120	-0.77	5.89	-10.31	-5.66	
62	0.711	0.269	0.570	0.020	0.469	-0.080	0.351	-0.160	-0.77	5.89	-14.73	-4.25	
63	1.390	0.205	1.320	0.175	1.270	0.155	1.190	0.145	1.08	4.73	-45.15	-14.24	
64	-0.020	0.060	-0.133	0.040	-0.287	0.020	-0.420	0.020	5.25	7.49	-28.09	-21.24	
65	1.060	0.279	1.250	0.170	1.440	0.141	1.588	0.129	-0.50	4.35	-22.91	-5.50	

Table S4. Decomposition equations applied for the calculations of the stored energy content (E_c) .

Salt	Decomposition equation
1	$2NaCl = Na_2 + Cl_2$
2	$2KBr = K_2 + Br_2$
3	$BaTiO_3 = BaO + TiO_2$
4	$2\text{AIPO}_4 = \text{Al}_2\text{O}_3 + \text{P}_2\text{O}_5$
5	$CaCO_3 = CaO + CO_2$
6	$Na_3AIF_6 = 3NaF + AIF_3$
7	$CaSO_4 = CaO + SO_3$
8	$Na_2CO_3 = Na_2O + CO_2$
9	$Na_2C_2O_4 = Na_2O + CO_2 + CO$
10	$Li_2CO_3 = Li_2O + CO_2$
11	$C_4H_2O_6Ca + 4H_2O = CaO + 4CO + 5H_2O$
12	$2C_6H_5O_7Na_3 = 3Na_2O + 5H_2O + 6CO + 6C$
13	$8C_{5}H_{11}O_{8}SNa + 8H_{2}O = 8NaOH \cdot H_{2}O + 40H_{2}O + 8CO_{2} + 32C + S_{8}$
14	$8PbS = 8Pb + S_8$
15	4KNO ₃ = 2 N ₂ + 2 K ₂ O + 5 O ₂
16	$16C_{13}H_{11}N_3O_5S = 24N_2 + 80H_2O + 8H_2S + S_8 + 208C$
17	$C_{3}H_{7}CIN_{4}O_{6} + H_{2}O = 2N_{2} + HCI + 4H_{2}O + 3CO$
18	$2C_{3}H_{7}N_{5}O_{9} = 5N_{2} + 7H_{2}O + CO + 5CO_{2}$
19	$4C_{3}H_{7}N_{7}O_{10} = 14N_{2} + 14H_{2}O + 12CO_{2} + O_{2}$
20	$C_2H_{14}N_{12}O_2 = N_2 + CH_4 + H_2 + H_2O_2$
21	$C_2H_{10}N_{12}O = 6N_2 + H_2O + 2CH_4$
22	$2C_2H_8N_{10}O_3 = 10N_2 + 6H_2O + CH_4 + 3C_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_$
23	$C_3H_6N_6O_5 = 3N_2 + 3H_2O + 2CO + C$
24	$2C_2H_{10}N_8O_5Na_2 = 8N_2 + 4NaOH \cdot H_2O + 2H_2O + CH_4 + 3C$
25	$CH_6N_6O_5 = 3N_2 + 3H_2O + CO_2$
26	$C_2L_{12}H_8N_8O_6 = 4N_2 + 2L_1OH \cdot H_2O + CO + C + H_2O$
27	$H_4N_6 = 2H_2 + 5N_2$
28	$2H_5N_7 = 3H_2 + 7N_2$
29	$2C_2\Pi_6N_{10} = 3C\Pi_4 + C + 10N_2$ H N O + 2H O = 2H O + H + 2N
21	$\Pi_4 \Pi_6 O + 2 \Pi_2 O - 3 \Pi_2 O + \Pi_2 + 3 \Pi_2$ C = H N = -2 C H + 5 N
22	$C_2 \Pi_8 \Pi_{10} - 2C \Pi_4 + 3 \Pi_2$ 2C I i U N O - 4U I i O + CU + 2C + 9N
32	$2C_{2}L_{12}R_{8}N_{8}O_{4} - 4R_{3}L_{1}O_{2} + CR_{4} + 3C + 6N_{2}$ C.H.N.N.2.O. = 2H.N.2O. + H.O. + 4N. + CO. + C
34	$C_{2}\Pi_{8}\Pi_{8}\Pi_{2}\Omega_{6} = 2\Pi_{3}\Pi_{2}\Pi_{2}\Omega_{2} + \Pi_{2}\Omega_{1} + 4\Pi_{2} + C\Omega_{1} + C$ $2C_{1}H_{1}K_{2}N_{1}\Omega_{2} = 4K\Omega_{1} + 8N_{2} + CH_{2} + 3C$
35	$2C_{2}H_{4}K_{2}H_{8}O_{2} = 4ROH + 8H_{2} + CH_{4} + 3C$ $2C_{4}H_{4}N_{4}O_{4}Rh_{5} = 4RhOH + 8N_{5} + CH_{4} + 3C$
36	$C_{1}H_{1}(N_{0}) = N_{0} + HC_{1} + CH_{1} + 5C_{1}$
37	$2B_{0}C_{3}H_{10}N_{0}O_{c} + 10H_{2}O = 2B_{0}O_{10}H_{10} + 8N_{0} + CH_{c} + 3C$
38	$2C_{4}H_{0}N_{0}C_{5} = 9N_{0} + 9H_{0}C_{5} + 7C_{5}$
39	$C_{c}H_{2}KN_{0}O_{0} = KOH + 4N_{0} + H_{2}O + CO_{0} + 5CO_{0}$
40	$C_0H_0N_0O_0 = 3N_0 + 4H_0O + 2CO_0$
41	$C_2H_8N_{10}O_4 = 5N_2 + 4H_2O + 2CO_2$
42	$C_2 H_3 N_1 O_4 = 3N_2 + 4H_2 O + 2C O + 3C$
74	$C_{5118146}C_{6} = 5132 + 71120 + 200 + 50$

Table S4. Continue.

Salt	Decomposition equation
43 44	$\begin{array}{l} C_2H_6N_6O_3 = 3N_2 + 3H_2O + 2C\\ C_2H_{14}N_{12}O_2 = 6N_2 + 2H_2O + 2CH_4 + H_2 \end{array}$
45	$2ClH_4NO_4 = N_2 + 4H_2O + Cl_2 + O_2$
46	$2C_9H_{10}N_{18}O_4 = 18N_2 + 8H_2O + CH_4 + 17C$
47	$2C_5H_{11}N_{11}O_7 = 11N_2 + 11H_2O + 3CO + 7C$
48	$2C_4H_{16}N_{16}O_5 = 16N_2 + 10H_2O + 3CH_4 + 5C$
49	$C_2H_8N_8O_5 = 4N_2 + 4H_2O + CO + C$
50	$C_6H_8N_{10}O_{11} = 5N_2 + 4H_2O + 5CO + CO_2$
51	$C_8H_{12}N_{14}O_{11} = 7N_2 + 6H_2O + 5CO + 3C$
52	$C_{3}H_{8}N_{10}O_{5} = 5N_{2} + 4H_{2}O + CO + 2C$
53	$C_4H_8N_{16}O_2 = 8N_2 + 2H_2O + CH_4 + 3C$
54	$C_2H_8N_{14}O_6 = 7N_2 + 4H_2O + 2CO$
55	$2C_4H_9N_{11}O_6 = 11N_2 + 9H_2O + 3CO + 5C$
56	$2\mathrm{LiN}_3 = 2\mathrm{Li} + 3\mathrm{N}_2$
57	$2TIN_3 = 2TI + 3N_2$
58	$2AgN_3 = 2Ag + 3N_2$
59	$2NH_4Cl = N_2 + 2HCl + 3H_2$
60	$2CH_6NCl = N_2 + 2HCl + 2CH_4 + H_2$
61	$4C_5H_8N_3Cl = 6N_2 + 4HCl + 7CH_4 + 13C$
62	$4C_4H_{14}OPCI = 4H_2O + 4HCI + 11CH_4 + 5C + 4P$
63	$C_2H_6O_2Ca = CaO + H_2O + CH_4 + C$
64	$4\text{FeS}_2 = 4\text{Fe} + \text{S}_8$
65	$C_2N_{12}O_4Rb_2 = 6N_2 + Rb_2O + CO_2 + CO_2$

Fig. S3. NH₄• radicals before (a) and after (b) MD simulation at ambient conditions.

Crystal 66 Ammonium fluoride *a* = 4.462 (4.439), *c* = 7.113 (7.164)

Ammonium acetate

Crystal 73

Crystal 74

 α -Sodium azide

a = 6.371 (6.211), b = 3.648 (3.658),

 $c = 5.665 (5.323), \beta = 103.1 (108.4)$

Hydroxylammonium azide *a* = 10.455, *b* = 3.711, *c* = 8.593

a = 4.723 (4.787), b = 7.599 (7.742) c = 12.101 (7.164), $\beta = 101.0$ (100.8)

 $Pca2_1$

C2/m

Crystal 67 Ammonium bromide *a* = 4.055 (3.952)

Crystal 68 Ammonium iodide *a* = 5.091 (5.135), *c* = 12.324 (12.577)

Pmmn

Crystal 69 Ammonium nitrate *a* = 5.724 (5.651), *b* = 5.455 (5.472) *c* = 4.945 (4.883)

Ammonium azide *a* = 9.009 (8.933) *b* = 3.722 (3.782) *c* = 8.547 (8.652)

Crystal 76 *α*-Cesium azide *a* = 5.925 (6.541), *c* = 7.973 (8.091)

Cell parameters are given in angstroms and degrees

 $P2_1/n$

Fig. S4. Crystal structures along with the optimized and experimental (in parentheses) asymmetric cell parameters of salts 66-76.

 $I\bar{4}2d$

Ammonium dihydrogenphosphate

Crystal 71

a = 7.544 (7.700)c = 7.627 (7.716)

Crystal 75

Hydrazinium azide

a = 5.718 (5.641), *b* = 5.552 (5.521)

 $c = 10.958 (11.306), \beta = 93.9 (93.3)$

Table S5. Hirshfeld charges (e^{-}) of the cation in the NH₄X and XN₃ series at various pressures along with conceptual DFT parameters (eV) of the corresponding radicals (X•) obtained in terms of the adiabatic approximation.

Salt	Х	0 GPa	20 GPa	50 GPa	100 GPa	Ι	A	η	χ	ω
66	F	0.260	0.172	0.110	0.080	17.78	3.51	14.27	10.65	3.97
67	Br	0.248	0.070	-0.033	-0.112	11.96	3.58	8.38	7.77	3.60
68	Ι	0.278	0.047	-0.057	-0.142	12.14	3.25	8.89	7.70	3.33
69	NO_3	0.370	0.176	0.070	-0.006	13.75	4.03	9.72	8.89	4.07
70	CH ₃ COO	0.306	0.220	0.174	0.116	11.41	3.15	8.26	7.28	3.21
71	H_2PO_4	0.330	0.140	0.014	-0.020	10.99	4.14	6.85	7.57	4.18
72	$\rm NH_4$	0.280	0.133	0.053	-0.020	4.41	-1.27	5.68	1.57	0.22
73	NH ₃ OH	0.230	0.133	0.077	0.047	7.20	-3.76	10.96	1.72	0.13
74	Na	0.268	0.223	0.220	0.233	5.42	0.60	4.82	3.01	0.94
75	NH_3NH_2	0.310	0.173	0.090	0.047	7.20	-3.76	10.96	1.72	0.13
76	Cs	0.300	0.280	0.280	0.290	4.01	0.49	3.53	2.25	0.72

Fig. S5. Dependence of conceptual DFT parameters (χ , η and ω) on cationic charges at 100 GPa (q_{100}) for the NH₄X and XN₃ series salts.

 $E_{\rm HOMO}$ E_{LUMO} ω η χ Salt Cat• Cat• An• An• An• Cat• An• Cat• An• Cat• -9.30 -3.51 -6.85 -1.77-2.44 -1.748.08 2.64 -13.34 -2.011 2 -8.89 -2.90-6.42-1.60-2.47-1.307.66 2.25 -11.88 -1.95 3 -1.96 -8.28 0.04 -6.90 -2.00-1.38 0.96 7.59 -0.23 -20.88 4 3.65 -25.37 5.78 -22.19 -2.13 -3.19 -4.71 23.78 -5.22 -88.76 5 -2.28 -9.87 -8.07 -3.39 -1.80 0.58 8.97 1.11 -0.05 -22.41 -2.01 6 0.76 -3.51 -1.77 -2.85 -1.74 -2.19 2.64 3.61 -0.847 -9.87 -8.07 -2.45 8.97 -0.52 -22.41 -2.83-0.37-1.801.60 8 -3.39 -2.28 -3.51 -1.77-1.740.58 2.64 -0.05 -2.011.11 9 -2.46-3.51 -0.37-1.77-2.09-1.741.42 2.64-0.48-2.0110 -2.28-3.65 1.11 -1.51 -3.39 -2.140.58 2.58-0.05 -1.55 11 -1.58 -9.87 0.96 -8.07 -2.55 -1.80 0.31 8.97 -0.02-22.41 0.46 -3.51 1.38 -1.77-0.92-1.74-0.922.64 -0.46 -2.0112 -7.57 -1.77-0.807.17 -32.20 13 -3.51 -6.77-1.742.64-2.01-10.97 -9.54 14 0.33 2.26 -1.93 -1.43 -1.2910.25 -0.43-36.82 15 -10.50 -2.90-6.97 -1.60 -3.53 -1.308.74 2.25 -10.80 -1.95 16 -7.67 -5.28 -6.26 -3.40 -1.41 -1.88 6.96 4.34 -17.15 -5.02 17 -9.30 -6.72 -6.85 -3.52 -2.44 -3.20 8.08 5.12 -4.09-13.34 -6.97 -3.53 -3.20 -10.50-6.72 -3.52 8.74 5.12 -10.80-4.0918 19 -9.71 -6.72 -6.04-3.52 -3.67 -3.20 5.12 -4.097.87 -8.45 -0.93 1.98 20 -3.03 -6.35 -1.11 -2.10-5.24 3.73 -0.93 -1.33 21 -3.49 -7.39 -1.37 -2.64-2.12-4.75 2.43 5.01 -1.39 -2.65 22 -3.49 -7.78 -1.37 -4.03 -2.12-3.75 2.43 5.90 -1.39 -4.64 23 -7.57 -5.35 -2.22 -5.24 6.46 -9.38 -6.35 -1.11 3.73 -1.33 24 -3.21 -3.51 -1.44-1.77 -1.77 -1.74 2.33 2.64 -1.53 -2.0125 -10.50 -7.40 -6.97 -4.11 -3.53 -3.28 8.74 5.76 -10.80 -5.04 26 -2.81-3.65 -1.31 -1.51 -1.50 -2.142.06 2.58 -1.41 -1.55 -7.99 27 -6.35 -5.43 -1.11 -2.56 -5.24 6.71 3.73 -8.80 -1.33-7.99 -5.43 -2.56 28 -7.39 -2.64-4.75 6.71 5.01 -8.80 -2.65 29 -7.99 -3.99 -5.43 -1.38-2.56 -2.62 6.71 2.68 -8.80-1.3830 -7.99 -7.78 -5.43-4.03-2.56 -3.75 6.71 5.90 -8.80 -4.64 31 -3.21 -6.35 -1.44 -1.11 -1.77-5.24 2.33 3.73 -1.53 -1.33 32 -3.21 -3.65 -1.44 -1.51 -1.77-2.142.33 2.58 -1.53 -1.55 33 -2.81-3.51 -1.50-1.742.06 -1.31 -1.772.64-1.41-2.0134 -2.90-3.21 -1.44 -1.60-1.77-1.302.33 2.25 -1.53 -1.95 35 -3.21 -2.80-1.44 -1.60-1.77-1.202.33 2.20 -1.53 -2.0136 -9.30 -5.66 -2.18-2.44 -3.48 8.08 3.92 -13.34 -2.21 -6.85 37 -3.21 -8.28 -1.44 -6.90 -1.77 -1.38 2.33 7.59 -1.53 -20.8838 -7.57 -3.96 -0.91 -2.22 -3.05 6.46 2.44 -9.38 -5.35 -0.97 -1.30 39 -8.68 -2.90 -6.89 -1.60-1.79 7.78 2.25 -16.97-1.95 40 -3.00 -6.35 -1.21 -1.11 -1.79 -5.24 2.11 3.73 -1.24 -1.33 41 -2.81-7.78 -1.31 -4.03 -1.50 -3.75 2.06 5.90 -1.41 -4.64 42 -9.23 -2.07 -7.07 -0.69 -2.15 -1.38 8.15 1.38 -15.43 -0.69 43 -10.50 -3.99 -6.97 -1.38 8.74 -3.53 -2.62 2.68 -10.80-1.38 -9.87 -2.50 2.83 44 -3.16 -7.20 -0.66 -2.67 8.54 -6.08 -13.65 45 -10.18-6.35 -7.25 -1.11 -2.93-5.24 8.71 3.73 -12.95 -1.33 46 -7.21 -2.81 -4.24 -0.56 -2.97 -2.25 5.73 1.68 -5.52 -0.63 47 -3.40-8.37 -1.37 -5.37 -2.03 -2.99 2.39 6.87 -1.40-7.89 48 -3.06 -3.20 -0.89 -0.70-2.17-2.501.97 1.95 -0.90 -0.76-2.171.97 49 -3.06 -6.35 -0.89 -1.11 -5.24 3.73 -0.90 -1.33 50 -3.34 -0.52 -5.24 3.61 -12.40-3.87 -6.35 -1.11 3.73 -1.33 -3.59 -2.95 51 -3.87 -3.34 -0.64-0.52 3.61 2.12-12.40-0.7652 -3.64 -7.78 -1.84 -4.03-1.81 -3.75 2.74 5.90 -2.08-4.64 53 -3.53 -4.25 -1.59 -1.60-1.94-2.65 2.56 2.92 -1.69 -1.62 54 -3.96 -4.03-0.96 3.48 5.90 -7.78-3.00 -3.75 -6.34 -4.64 55 -9.88 -3.43 -7.45 -0.87-2.42-2.55 8.66 2.15 -15.48 -0.90 56 -8.49 -3.65 -5.50 -1.51 -2.99-2.14 6.99 2.58 -8.17 -1.55 -2.99 6.99

Table S6. The frontier molecular orbital energies and conceptual DFT parameters (in eV) obtained in terms of the vertical approximation.

-1.22

2.64

-8.17

-2.86

57

-8.49

-3.25

-5.50

-2.03

Table S6. Continue.

C 1	$E_{\rm HOMO}$		$E_{ m LUMO}$		η		χ		ω	
Salt	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•
58	-8.49	-5.33	-5.50	-3.46	-2.99	-1.87	6.99	4.39	-8.17	-5.16
59	-9.30	-6.35	-6.85	-1.11	-2.44	-5.24	8.08	3.73	-13.34	-1.33
60	-9.30	-2.37	-6.85	-0.98	-2.44	-1.39	8.08	1.68	-13.34	-1.01
61	-9.30	-2.97	-6.85	-0.73	-2.44	-2.24	8.08	1.85	-13.34	-0.77
62	-9.30	-1.85	-6.85	-1.02	-2.44	-0.83	8.08	1.44	-13.34	-1.24
63	-7.52	-9.87	-4.10	-8.07	-3.42	-1.80	5.81	8.97	-4.93	-22.41
64	0.40	-13.48	1.95	-11.64	-1.55	-1.83	-1.17	12.56	-0.44	-43.03
65	-3.96	-2.80	-3.00	-1.60	-0.96	-1.20	3.48	2.20	-6.34	-2.01

Table S7. The frontier molecular orbital energies and conceptual DFT parameters (in eV) obtained in terms of the adiabatic approximation.

Salt			ELUMO		η		X		ω	
Suit	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•
1	13.07	5.41	3.71	0.60	9.36	4.81	8.39	3.00	3.76	0.94
2	11.96	4.50	3.58	0.52	8.38	3.98	7.77	2.51	3.60	0.79
3	3.58	10.14	-1.91	5.22	5.49	4.91	0.84	7.68	0.06	6.00
4	-1.39	28.96	-/.3/	18.93	5.99	10.03	-4.38	23.95	1.60	28.59
5	5.12	12.09	-5.54	0.15	8.00 5.01	5.94 4 91	0.79	9.12	0.04	7.00
0	0.37 5.27	12.00	-4.04	6.15	5.21 6.80	4.01	-2.04	0.12	0.40	0.94 7.00
8	5.12	5.41	-3.54	0.15	8.65	<i>J.9</i> 4 <i>A</i> 81	0.79	3.00	0.20	0.94
9	0.32	5 41	-2.41	0.00	2.73	4.81	-1.05	3.00	0.04	0.94
10	5.12	5.62	-3.54	0.55	8.65	5.07	0.79	3.08	0.04	0.94
11	1.25	12.09	-0.57	6.15	1.82	5.94	0.34	9.12	0.03	7.00
12	-2.12	5.41	-4.06	0.60	1.94	4.81	-3.09	3.00	2.46	0.94
13	6.93	5.41	5.28	0.60	1.66	4.81	6.11	3.00	11.26	0.94
14	2.20	13.83	-4.04	7.01	6.23	6.82	-0.92	10.42	0.07	7.96
15	13.75	4.50	4.03	0.52	9.72	3.98	8.89	2.51	4.07	0.79
16	8.31	7.01	4.33	1.79	3.98	5.22	6.32	4.40	5.02	1.86
17	13.07	7.05	3.71	4.26	9.36	2.80	8.39	5.66	3.76	5.72
18	13.75	7.05	4.03	4.26	9.72	2.80	8.89	5.66	4.07	5.72
19	11.68	7.05	4.66	4.26	7.03	2.80	8.17	5.66	4.75	5.72
20	4.58	4.40	-0.33	-1.27	4.91	5.68	2.12	1.57	0.46	0.22
21	5.09	6.45	-0.25	-3.71	5.34	10.16	2.42	1.57	0.55	0.09
22	5.09	/.20	-0.25	-3.70	5.34	10.96	2.42	1./2	0.55	0.13
25	9.22	4.40 5.41	5.09	-1.27	5.55 4.70	J.08 4 81	0.55	3.00	4.03	0.22
24 25	4.02	5.41 6.54	-0.08	0.00 3.75	9.72	2 79	2.27	5.00	0.33	0.94 4 74
26	5 25	5.62	-0.15	0.55	5 40	5.07	2.55	3.08	0.60	0.94
27	10.55	4 40	2 39	-1 27	8 16	5.68	6 47	1.57	2.56	0.22
28	10.55	6.45	2.39	-3.71	8.16	10.16	6.47	1.37	2.56	0.09
29	10.55	4.41	2.39	0.28	8.16	4.14	6.47	2.35	2.56	0.67
30	10.55	7.20	2.39	-3.76	8.16	10.96	6.47	1.72	2.56	0.13
31	4.62	4.40	-0.08	-1.27	4.70	5.68	2.27	1.57	0.55	0.22
32	4.62	5.62	-0.08	0.55	4.70	5.07	2.27	3.08	0.55	0.94
33	5.25	5.41	-0.15	0.60	5.40	4.81	2.55	3.00	0.60	0.94
34	4.62	4.50	-0.08	0.52	4.70	3.98	2.27	2.51	0.55	0.79
35	4.62	4.34	-0.08	0.49	4.70	3.85	2.27	2.41	0.55	0.76
36	13.07	6.78	3.71	1.10	9.36	5.68	8.39	3.94	3.76	1.37
37	4.62	10.14	-0.08	5.22	4.70	4.91	2.27	7.68	0.55	6.00
58 20	9.22	5.94 4.50	5.89 5.60	0.17	5.55 1.15	3.// 2.09	0.33	2.06	4.03	0.56
39 40	10.04	4.30	0.00 0.00	0.52	4.45 11	5.98 5.68	7.82 2.14	2.31	0.88	0.79
40 <u>4</u> 1	4.20	4.40 7.20	-0.15	-1.27	4.11 5.40	5.00 10.96	2.14 2.55	1.37	0.50	0.22
42	10.80	3 75	5 59	-0.75	5.40	4 51	2.33 8.20	1.72	6.46	0.15
43	13 75	4 41	4 03	0.75	9.72	4 14	8 89	2 35	4 07	0.25
44	5.50	-2.24	1.84	7.80	3.66	-10.03	3.67	2.78	1.84	-0.38
		_ .			<u> </u>		2.07			0.00

Table S7. Continue.

G 1.	$E_{\rm HOMO}$		$E_{\rm LUMO}$		η		χ		ω	
Salt	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•	An•	Cat•
45	12.34	4.40	5.29	-1.27	7.05	5.68	8.82	1.57	5.52	0.22
46	8.18	4.00	5.54	0.31	2.64	3.69	6.86	2.16	8.92	0.63
47	4.70	9.22	0.17	4.54	4.53	4.68	2.44	6.88	0.66	5.06
48	4.76	3.72	0.26	-0.41	4.50	4.12	2.51	1.65	0.70	0.33
49	4.76	4.40	0.26	-1.27	4.50	5.68	2.51	1.57	0.70	0.22
50	5.92	4.40	2.31	-1.27	3.61	5.68	4.12	1.57	2.35	0.22
51	5.92	4.25	2.31	-0.44	3.61	4.70	4.12	1.90	2.35	0.39
52	5.38	7.20	0.71	-3.76	4.66	10.96	3.04	1.72	0.99	0.13
53	4.81	4.25	0.21	0.54	4.60	3.71	2.51	2.40	0.69	0.77
54	6.10	7.20	1.80	-3.76	4.30	10.96	3.95	1.72	1.81	0.13
55	11.55	3.71	5.89	-0.10	5.65	3.81	8.72	1.80	6.72	0.43
56	12.78	5.62	2.71	0.55	10.06	5.07	7.75	3.08	2.98	0.94
57	12.78	5.51	2.71	0.35	10.06	5.16	7.75	2.93	2.98	0.83
58	12.78	7.95	2.71	1.32	10.06	6.63	7.75	4.64	2.98	1.62
59	13.07	4.40	3.71	-1.27	9.36	5.68	8.39	1.57	3.76	0.22
60	13.07	4.14	3.71	-0.55	9.36	4.69	8.39	1.79	3.76	0.34
61	13.07	4.37	3.71	-0.67	9.36	5.04	8.39	1.85	3.76	0.34
62	13.07	3.05	3.71	-0.10	9.36	3.16	8.39	1.47	3.76	0.34
63	7.36	12.09	1.42	6.15	5.94	5.94	4.39	9.12	1.62	7.00
64	1.78	16.49	-3.67	7.44	5.45	9.05	-0.95	11.96	0.08	7.91
65	6.10	4.34	1.80	0.49	4.30	3.85	3.95	2.41	1.81	0.76

Fig. S6. Efficiency of various conceptual DFT parameters in distinguishing of compounds with the positive and negative energy content.