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1. Interaction of charges and dipoles with other dipoles in a continuous model, 

cylindrical coordinates 
 

The ferroelectric material is supposed concentrated inside an infinite plate with outer surfaces at 𝑧′ = 𝑍 

and 𝑧′ = −𝑍, 𝑧′ being the coordinate oriented perpendicular to the plate with unit vector �̂�, as represented 

in Figure SI-1. This volume will be noted by 𝒟 in the following. The material has a polarization oriented 

along the positive direction of 𝑧, 𝑧′, and in the most general case the polarization is function of 𝑧, 𝑃(𝑧). 
 

 
 

Figure SI-1. Geometry for evaluating the total electron-dipole and dipole-dipole interaction in a 

continuous model. 

 

 The problem will be treated in cylindrical coordinates (𝜌, 𝜑, 𝑧′). Suppose first that an electron is 

placed at the distance 𝑧 from the central plane of the material 𝑧′ = 0, i. e. at 𝑂′: (𝜌 = 0, (𝜑), 𝑧′ = 𝑧). A 

volume element 𝑑3𝑟 = 𝜌𝑑𝜌𝑑𝜑𝑑𝑧′ carries a dipole moment 𝛿𝒑 = �̂�𝑃(𝑧)𝑑3𝑟. Let 𝒓′ = 𝑧�̂� − 𝒓 be the 

vector oriented from the volume element 𝑑3𝑟 towards the point 𝑂′, 𝑟′2 = 𝜌2 + (𝑧′ − 𝑧)2. The interaction 

energy between the electron placed in 𝑂′ and the dipole 𝛿𝒑 is: 

 

𝛿𝜀𝑒−𝑑 = −
𝑒𝛿𝒑 ∙ 𝒓′

4𝜋𝜖0𝜅𝑟′3
 

            (SI-1) 
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where – 𝑒 is the electron charge, 𝜖0 the permittivity of vacuum, and 𝜅 the dielectric constant of the 

material. Assuming that the polarization is uniform 𝑃(𝑧) = 𝑃: 

 

𝜀𝑒−𝑑 =
𝑒𝑃

4π𝜖0𝜅
∫

cos 𝜃′

𝑟′2𝒟

𝑑3𝑟 = −
𝑒𝑃𝑧

𝜖0𝜅
 

            (SI-2) 

 

The above equation in fact evidences the “depolarization field” −𝑃/(𝜖0𝜅), oriented in the opposite 

direction with respect to the polarization. Adding the field due to the surface charges, see Figure 1 from 

the main text (positive charges at  𝑧′ = −𝑍 and negative charges at 𝑧′ = 𝑍), the total field inside the 

material vanishes. 

 The interaction of an electric dipole 𝒑0 placed in 𝑂′ with the dipole 𝛿𝒑 starts with: 

 

𝛿𝜀𝑑−𝑑 = −
3(𝒑0 ∙ 𝒓′̂)(𝛿𝒑 ∙ 𝒓′̂) − 𝛿𝒑 ∙ 𝒑0

4π𝜖0𝜅𝑟′
3

 

            (SI-3) 

 

and, using 𝑃(𝑧) = 𝑛0𝑝𝑝B〈𝜉〉, where 𝑝B is the “Bohr electon”, 𝑝 the maximum value of the dipole moment 

of an unit cell expressed in 𝑝B units, 〈𝜉〉 with |〈𝜉〉| < 1 the average value of the order parameter and 𝑛0 

the density of dipoles in the material (inverse of the volume of a unit cell), and with 𝑝0 = 𝑝𝑝B𝜉, Ω0 =
4π𝑎0

3/3 and 𝜀0 the energy unit defined by eq. (3) from the main text:  

 

𝜀𝑑−𝑑 = −
𝜀0𝑝

2𝑛0Ω0
4π𝜅

𝜉∫
3cos2 𝜃′ − 1

𝑟′3𝒟−𝒟0

〈𝜉〉𝑑3𝑟 

            (SI-4) 

 

One can easily demonstrate (see also below) that, if 〈𝜉〉 = Const. and the integral is performed over the 

whole material (−𝑍 ≤ 𝑧′ ≤ 𝑍; 0 < 𝜌 < ∞)  the dipole-dipole interaction energy cancels with the 

interaction energy of the dipole 𝒑0 with the accumulated charges at the extremal surfaces 𝑧′ = ±𝑍. But 

in fact one has to eliminate from the integral a volume 𝒟0 corresponding to the dipole 𝒑0, in order to 

exclude self-interaction. 𝒟0 is defined as (𝑧 − 𝑧0 ≤ 𝑧
′ ≤ 𝑧 + 𝑧0; 0 < 𝜌 < 𝜌0), see Figure SI-1. Eq. (SI-

4) becomes: 

 

𝜀𝑑−𝑑
(0) (𝑧) = −

𝜀0𝑝
2𝑛0Ω0
2𝜅

𝜉(𝑧)∫ 〈𝜉(𝑧′)〉𝑑𝑧′
𝑍

−𝑍

∫ 𝜌𝑑𝜌 {
3(𝑧′ − 𝑧)2

[𝜌2 + (𝑧′ − 𝑧)2]
5
2

−
1

[𝜌2 + (𝑧′ − 𝑧)2]
3
2

}
∞

𝜌0

=
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜌0
2𝜉(𝑧)∫

〈𝜉(𝑧′)〉

[𝜌02 + (𝑧′ − 𝑧)2]
3
2

𝑑𝑧′
𝑍

−𝑍

 

            (SI-5) 

 

 In the above integral, a cylinder of radius 𝜌0 is excluded, so one needs to add a one dimensional 

integral from –𝑍 to 𝑍 where one excludes the range 𝑧 − 𝑧0 ≤ 𝑧′ ≤ 𝑧 + 𝑧0. This adds the following term, 

for −𝑍 + 𝑧0 ≤ 𝑧 ≤ 𝑍 − 𝑧0: 

 

𝜀𝑑−𝑑
(1) (𝑧) = −

𝜀0𝑝
2𝑛0Ω0
2𝜅

𝜌0
2𝜉(𝑧) {∫

𝑧−𝑧0

−𝑍

+∫
𝑍

𝑧+𝑧0

}
〈𝜉(𝑧′)〉𝑑𝑧′

|𝑧′ − 𝑧|3
 

            (SI-6) 

For −𝑍 + 𝑧0 > 𝑧 the first integral is not considered, and for 𝑍 − 𝑧0 < 𝑧 the second integral is not 

considered. 



 The stabilization energy (eq. (1) from the main text), i. e. the energy of interaction of 𝒑0 with the 

outer charge distribution will be written, by using the definition of the polarization, as: 

 

𝜀𝑠(𝑧) = −
𝜀0𝑝

2𝑛0Ω0
𝜅

𝜉(𝑧)
1

2𝑍
∫ 〈𝜉(𝑧′)〉𝑑𝑧′
𝑍

−𝑍

 

            (SI-7) 

 

The total energy (stabilization + dipole-dipole interaction) is the sum of (SI-5), (SI-6) and (SI-7). The 

interaction with an external field and the associated statistics will be included later. For instance, one will 

suppose that 〈𝜉〉 = Const., i. e. it does not depend on 𝑧. In this case, the total energy is written as: 

 

𝜀tot.(𝑧) =
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜉〈𝜉〉 {
𝑍 − 𝑧

[(𝑍 − 𝑧)2 + 𝜌02]1/2
+

𝑍 + 𝑧

[(𝑍 + 𝑧)2 + 𝜌02]1/2
− 2 + 𝑓(𝜌0, 𝑧0, 𝑍, 𝑧)} 

            (SI-8a) 

where: 

 

𝑓(𝜌0, 𝑧0, 𝑍, 𝑧) =

{
  
 

  
 

𝜌0
2

2(𝑍 − 𝑧)2
+

𝜌0
2

2(𝑍 + 𝑧)2
−
𝜌0

2

𝑧02
, for − 𝑍 + 𝑧0 ≤ 𝑧 ≤ 𝑍 − 𝑧0

𝜌0
2

2(𝑍 − 𝑧)2
−
𝜌0

2

2𝑧02
, for − 𝑍 ≤ 𝑧 < −𝑍 + 𝑧0

𝜌0
2

2(𝑍 + 𝑧)2
−
𝜌0

2

2𝑧02
, for 𝑍 − 𝑧0 < 𝑧 ≤ 𝑍

 

            (SI-8b) 

 

The corresponding dependencies with the out-of-plane oriented coordinate 𝑧 are represented in Figure 

SI-2. 

 

 
 

Figure SI-2. Total energies (ordering + dipole-dipole) computed as function of the coordinate 𝑧, for 

several values of the cutoff parameters 𝜌0 (divided by half of the film thickness,  𝑍) and for 𝛾 = 𝜌0/𝑧0 

= 1.05 (a) and 1.1 (b).  

 

 For 𝑧 = 0, i. e. in the middle plane of the material: 

 



𝜀tot.(0) =
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜉〈𝜉〉 {
2𝑍

[𝑍2 + 𝜌02]1/2
− 2 +

𝜌0
2

𝑍2
−
𝜌0

2

𝑧02
} 

            (SI-9) 

 

and one observes that, if 𝜌0 → 0 with 𝑧0 ≠ 0 the total energy vanishes in this middle plane. It follows 

that the stabilization character (i. e. negative value) of the total energy is defined by the ratio 𝛾 ≡ 𝜌0/𝑧0. 

In the following, this ratio will be connected with the geometrical characteristics of the unit cell of the 

perovskite material. One starts with the asssumption that the cylinder of radius 𝜌0 and height 2𝑧0 

represents a cell corresponding to the formula unit ABO3, whose basis has an area 𝑎2 and whose height 

is 𝑐, with 𝑐/𝑎 the tetragonality factor. Then, it is natural to suppose that 2𝑧0 = 𝑐 and π𝜌0
2 = 𝑎2. In this 

case, let Θ = 2𝑍/𝑐 be the number of unit cells comprised in the total thickness 2𝑍 (twice the number of 

atomic layers). The parameter 𝛾 is connected to the tetragonality by 𝛾 = (2/√π)(𝑐/𝑎)−1. With these 

assumptions, eq. (SI-9) may be written by using more ‘physical’ parameters as: 

 

𝜀tot.(0) =
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜉〈𝜉〉

{
 
 

 
 

2

(1 +
𝛾2

4Θ2
)

1
2

− 2 +
𝛾2

4Θ2
− 𝛾2

}
 
 

 
 

→ −
𝛾2

2

𝜀0𝑝
2𝑛0Ω0
𝜅

≡ −
𝐺𝜀0𝑝

2𝑛0Ω0
𝜅

 

          (when Θ → ∞) 

            (SI-10) 

 

The above formula justifies the geometry factor 𝐺(< 1) discussed in the main text. In fact, since for 

practical cases the tetragonality 𝑐/𝑎 ≈ 1.05 − 1.1, the parameter 𝛾 is close to unity, then 𝐺 is close to 

1/2. Figure SI-3 presents the geometry factor for different thicknesses of the ferroelectric film, for 

different values of 𝛾, as function on the film thickness Θ. 

 

 
 

Figure SI-3. Geometry factors obtained from eq. (SI-10) for films of different thicknesses and values of 

the parameter 𝛾 = 𝜌0/𝑧0. 

 

 The following step is to treat the case of a non-uniform polarization as function of 𝑧. The first 

step is to write down the sum of eq. (SI-5), (SI-6) and (SI-7) such as: 

 

𝜀tot.(𝑧) = −
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜉�̂�(𝛾, Θ, 𝑧; 〈𝜉(𝑧)〉) 



            (SI-11)  

where �̂� is an integral operator, since the function 〈𝜉(𝑧)〉 intervenes in the integrals of all equations (SI-

5), (SI-6) and (SI-7). For each point 𝑧 one may then apply the statistics of a two-state system, in applied 

field ℎ, yielding the equation: 

 

〈𝜉(𝑧)〉 = tanh{−𝛽𝜀tot.(𝑧) + 𝛽𝜀0𝑝ℎ} = tanh {
𝜀0�̃�

2𝑛0Ω0
2𝜅𝑘B𝑇

(�̂�(𝛾, Θ, 𝑧; 〈𝜉(𝑧)〉) +
2𝜅ℎ

𝑛0Ω0𝑝
)} 

            (SI-12) 

 

and this equation may be solved by iterations, i. e. one starts with 〈𝜉(𝑧)〉 in the right hand side term, 

evaluate a new 〈𝜉(𝑧)〉 by using the equation, replace again in the right hand side term, and so on. From 

now on, ℎ′ = 2𝜅ℎ/(𝑛0Ω0𝑝) and a simple evaluation yields that this corrected field is in the range of 

unity. Also, one defines a ‘reduced temperature’ 𝑡 = 𝑇/𝑇0, with 

 

𝑘B𝑇0 =
𝜀0𝑝

2𝑛0Ω0
2𝜅

 

            (SI-13) 

 

and, working in the reduced coordinate 𝑥 = 𝑧/𝑍, with a straighforward redefinition of 〈𝜉(𝑥)〉, eq. (SI-

12) becomes: 

 

〈𝜉(𝑥)〉 = tanh {
�̂�(𝛾, Θ, 𝑧; 〈𝜉(𝑥)〉) + ℎ′

𝑡
} 

            (SI-14) 

and, exploiting an obvious symmetry 〈𝜉(𝑥)〉 = 〈𝜉(−𝑥)〉: 
 

�̂�(𝛾, Θ, 𝑧; 〈𝜉(𝑥)〉)

= 2∫ 〈𝜉(𝑥′)〉𝑑𝑥′
1

0

− (
𝛾

2Θ
)
2

{
 
 

 
 

∫
〈𝜉(𝑥′)〉𝑑𝑥′

[(
𝛾
2Θ)

2

+ (𝑥′ + 𝑥)2]

3
2

1

0

+∫
〈𝜉(𝑥′)〉𝑑𝑥′

[(
𝛾
2Θ)

2

+ (𝑥′ − 𝑥)2]

3
2

1

0

}
 
 

 
 

+ (
𝛾

2Θ
)
2

{
 
 
 
 

 
 
 
 ∫

〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ − 𝑥)3

1

1
2Θ
+𝑥

+∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ + 𝑥)3

1

1
2Θ
−𝑥

, for 0 ≤ 𝑥 ≤
1

2Θ

∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ − 𝑥)3

1

1
2Θ
+𝑥

−∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ − 𝑥)3

𝑥−
1
2Θ

0

+∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ + 𝑥)3

1

0

, for 
1

2Θ
≤ 𝑥 ≤ 1 −

1

2Θ

∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ + 𝑥)3

1

0

−∫
〈𝜉(𝑥′)〉𝑑𝑥′

(𝑥′ − 𝑥)3

𝑥−
1
2Θ

0

, for 𝑥 > 1 −
1

2Θ

 

            (SI-15) 

 

Eqs. (SI-14 – 15) are solved by iterations (maximum 20 iterations are needed) and produced the data 

represented in Figure 3, main text. 

 

In the case of a finite cylindrical domain with maximum radius 𝜌max., the total energy, eq. (SI-8a) is 

written as: 

 



𝜀tot.(𝑧) =
𝜀0𝑝

2𝑛0Ω0
2𝜅

𝜉〈𝜉〉 {
𝑍 − 𝑧

[(𝑍 − 𝑧)2 + 𝜌0
2]1/2

+
𝑍 + 𝑧

[(𝑍 + 𝑧)2 + 𝜌0
2]1/2

−
𝑍 − 𝑧

[(𝑍 − 𝑧)2 + 𝜌max.2]
1
2

−
𝑍 + 𝑧

[(𝑍 + 𝑧)2 + 𝜌max.2]1/2
− 2 + 𝑓(𝜌0, 𝑧0, 𝑍, 𝑧)} 

            (SI-16) 

 

with 𝑓(𝜌0, 𝑧0, 𝑍, 𝑧) given by eq. (SI-8b). Thus, the formation of domains introduces negative terms 

yielding to an enhancement of the stability of the FE state. 

 

 

2. The Clausius-Mossotti relation in spherical and cylindrical coordinates 
 

 
Figure SI-4. Geometries of a spherical cavity (a) and of a cylindrical cavity (b) for calculating the internal 

field. 

 

The first step is to compute the internal field inside a vacuum cavity performed in the material by 

removing a piece of the poled material. The remaining charges accumulated on the inner surfaces are as 

represented in Figure SI-4. 

 

(a) For spherical coordinates, the total field is obtained by integrating the projections on the axis 𝑧 for 

any charge element on the inner surface, which is proportional to 𝜎𝑟2𝑑Ω, where 𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜑 is the 

solid angle. The surface charge density varies with the angle 𝜃 such that 𝜎(𝜃) = −𝑃 cos 𝜃, see the 

enlarged part of Figure SI-4(a). Consequently: 

 

𝑑ℇ𝑧(𝜃) = 𝑑ℇ(𝜃) cos 𝜃 = −
𝜎(𝜃)𝑟2𝑑Ω

4π𝜖0𝑟
2
cos 𝜃 =

𝑃 cos2 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑

4π𝜖0
 

            (SI-17) 

It is easy to demonstrate that the components normal to 𝑧 are cancelled by integration. Integrating the 

above equation over 𝜃 and 𝜑 yields: 

 

ℇ𝑧 =
𝑃

3𝜖0
 

            (SI-18) 

Therefore, in presence of an external field ℇ0 the total field in the center of the cavity is ℇ𝑧 + ℇ0. The 

Clausius-Mossotti equation is obtained by introducing the polarizability 𝛼 of an elemental dipole placed 



in the center of the cavity, whose dipole moment will be 𝛼(ℇ𝑧 + ℇ0). Therefore, the polarization is 𝑛0 

times this dipole moment, where 𝑛0 is the density of dipoles: 

 

𝑃 = 𝑛0𝛼 (ℇ0 +
𝑃

3𝜖0
) 

            (SI-19) 

At the same time, the polarization is proportional to the applied field 

 

𝑃 = (𝜅 − 1)𝜖0ℇ0 
            (SI-20) 

Extracting the terms with 𝑃 in eq. (SI-9) and using eq. (SI-20) one obtains the Clausius-Mossotti 

equation: 

 
𝜅 − 1

𝜅 + 2
=
𝑛0𝛼

3𝜖0
 

            (SI-21) 

 

(b) For cylindrical coordinates, one extracts from the material a cylinder-shaped cavity with radius 𝜌0 

and height 2𝑧0, see Figure SI-4(b). Each lateral face of the cylinder has this time an uniform charge 

density 𝜎 = ±𝑃. The distance from a point on the external face placed at the distance 𝜌 from the center 

of the face to the middle of the cylinder is 𝑟 = (𝜌2 + 𝑧0
2)1/2. One needs then to integrate 

 

𝑑ℇ𝑧(𝜌) = 𝑑ℇ(𝜌)
𝑧0
𝑟
=
𝑃𝜌𝑧0𝑑𝜌𝑑𝜑

4π𝜖0𝑟3
 

            (SI-22) 

 

and to multiply by 2, since one needs to sum the contribution from both positively and negatively charged 

lateral faces. 

 

ℇ𝑧 =
𝑃𝑧0
𝜖0

∫
𝜌𝑑𝜌

(𝜌2 + 𝑧02)3/2

𝜌0

0

=
𝑃

𝜖0
{1 −

1

(1 + 𝛾2)1/2
} 

            (SI-23) 

with 𝛾 = 𝜌0/𝑧0 (see also the above considerations, after eq. (Si-9)). As a consequence, in this case, the 

Clausius=Mossotti equation results as: 

 

𝑛0𝛼

𝜖0
=

(𝜅 − 1)(1 + 𝛾2)1/2

𝜅{(1 + 𝛾2)1/2 − 1} + 1
= {

𝜅 − 1,   for 𝛾 → 0
𝜅 − 1

𝜅
,   for 𝛾 → ∞

 

            (SI-24) 

 

As a consequence, different Clausius-Mossotti factors are obtained for cavities of different shapes. 

 

 

  



3. The approximation for the inverse Langevin function proposed by A. Cohen 

[Rheol. Acta 30, 270–273 (1991).] 
 

Remember that 

ℒ(𝑥) = coth 𝑥 −
1

𝑥
 

 

ℒ−1(𝑥) ≈
3𝑥 − 𝑥3

1 − 𝑥2
 

            (eq. (11)) 

 
Figure SI-5. Inverse Langevin function, exact and approximation given by eq. (11). 

 

 

         

 

 

 


