Supporting information

for

Simulation of UV Absorption Spectra and Relaxation Dynamics of Uracil and Uracil-Water Clusters

B. Milovanović[†], J. Novak[‡], M. Etinski[†], W. Domcke[¶] and N. Došlić[‡]

[†]Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia [‡]Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia [‡]Higher Medical and Biological School, South Ural State University, Chelyabinsk,

Russia

[¶]Department of Chemistry, Technical University of Munich, Garching, Germany

UV-vis spectra of DNA bases

UV-vis spectrum of uracil was measured in mQ-water at 25° C on a PG T80/T80+ spectrometer. The stock solution of uracil was prepared by dissolving 2.32 mg in water (10 mL), and this solution was then diluted twenty times. A UV-vis cell was filled with the solution of uracil (2.0 mL) and an UV-vis spectrum was taken. This solution was then diluted with water and after each dilution a spectrum was measured. Dependence of the absorbance on the base concentration was fit to linear equation and the molar absorption coefficient was determined from the slope.

Figure S 1: Absorption spectrum of uracil in H₂O (ϵ_{258} = 7680±20 M⁻¹ cm⁻¹).

Figure S 2: Average population of the ground state, S_0 (black) and the two lowest excited states S_1 (red) and S_2 (blue) for (a) uracil and (b) $U(H_2O)_6$.

Figure S 3: Average population of the diabatic $\pi_1 \pi_1^*$ state (green) as obtained using 5000 randomly selected structures from the original set of (a) 48 trajectories of U and (b) 31 trajectories of U(H₂O)₆ with replacement. The gray areas represent the 95 % confidence interval (dark gray) yielding lifetimes of 161±6 fs for U and 76±3 fs for U(H₂O)₆ and the 95 % prediction interval (light gray) with error margins of ±40 fs for U and ±18 fs for U(H₂O)₆.

Figure S 4: Time evolution of the hydrogen bond distances in $U(H_2O)_6$ averaged over trajectories that remained in the $S_1(n_1\pi_1^*)$ state at the end of the simulation. The black curves indicate the mean value of the (a) N1-H1···OH₂ (b) N3-H3···OH₂ (c) C2=O7···HOH d) C4=O8···HOH distances. The blue shaded areas indicate the margin of error (90% confidence interval).

	MP2	BLYP
N1-C2	1.39	1.42
C2-N3	1.39	1.41
N3-C4	1.41	1.44
C4-C5	1.46	1.47
N1-H1	1.01	1.02
N3-H3	1.02	1.02
C4-O8	1.23	1.24
C2-O7	1.23	1.24
C5-C6	1.37	1.37
C2-N1-H1	115.1	114.9
N3-C2-O7	124.1	124.5
C4-N3-H3	116.2	116.2
C5-C4-O8	126.1	126.4

Table S 1: Comparison of geometrical parameters (in Angstroms and degrees) of U as obtained with MP2/aug-cc-pVDZ and with BLYP-D3/DZVP-GTH.

Table S 2: SCS-ADC(2)/aug-cc-pVDZ excitation energies (in eV) and oscillator strengths (in parentheses) of U computed at the MP2/aug-cc-pVDZ optimized ground-state geometry (E^{ref}) and at the BLYP-D3/DZVP-GTHD3 optimized ground-state geometry (E^{BLYP}). Transitions below 6.85 eV (180 nm) are included. Dominant NTO pairs contributing to the transitions are specified.

S	E^{ref}	NTOs	E^{BLYP}
$\overline{S_1}$	4.88	$n_1\pi_1^*$	4.67
	(0.000)		(0.000)
S_2	5.36	$\pi_1\pi_1^*$	5.19
	(0.223)		(0.221)
S_3	6.01	$\pi_1 \mathrm{Ryd}_1$	6.01
	(0.004)		(0.004)
S_4	6.19	$n_2 \pi_2^*$	5.94
	(0.000)		(0.000)
S_5	6.42	$\pi_2 \pi_1^*$	6.19
	(0.048)		(0.052)
S_6	6.74	$n_1 Ryd_1$	6.72
	(0.038)		(0.022)
S_7	6.85	$\pi_1\pi_2^*+\mathrm{n_1}\ \mathrm{Ryd_2}$	6.66
•	(0.208)		(0.231)