Supporting Information

Interface-induced transition from Schottky-to-Ohmic contact in Sc₂CO₂-based

multiferroic heterojunctions

Huamin Hu and Gang Ouyang*

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China

* Corresponding author: gangouy@hunnu.edu.cn

Stacking modes	<i>a=b</i> (Å)	d (Å)	E_b (eV)	contact type
U1	3.42	3.41	1.44	Schottky
U2	3.42	3.40	1.47	Schottky
U3	3.42	3.48	1.38	Schottky
D1	3.42	2.89	1.49	Ohmic
D2	3.42	2.76	1.58	Ohmic
D3	3.42	2.79	1.53	Ohmic

Table S1. Optimized lattice constant (a = b), equilibrium interface distance (d), and binding energy (E_b) of MnSe₂/Sc₂CO₂ with different stacking modes.

Figure S1. The electronic band structures of (a) $MnSe_2/Sc-P\uparrow$, (b) $MnSe_2/Sc-P\downarrow$ with different stacking modes.

Figure S2

Figure S2. (a) Top views of Sc₂CO₂, VSe₂ or VTe₂. Side views of VSe₂/Sc₂CO₂ (b), and VTe₂/Sc₂CO₂ (c) with polarized states *Sc*-P \uparrow and *Sc*-P \downarrow .

Figure S3. The electronic band structures of (a) 1T-VSe_2 , (b-c) $V\text{Se}_2/\text{Sc}_2\text{CO}_2$, (d) 1T-VTe_2 , and (e-f) $V\text{Te}_2/\text{Sc}_2\text{CO}_2$ with polarized states $Sc-P\uparrow$ and $Sc-P\downarrow$. On the right (b-c, e-f) is the corresponding projected density of states.

Figure S4. The electronic band structures of $MnSe_2/Sc-P\downarrow$ heterostructures with (a) GGA+U_{eff} (U_{eff}=3.9 eV), (b) GGA+SOC, and (c) HSE06+SOC.

Figure S5. The electronic band structures of $MnSe_2/Sc-P\downarrow$ with different interlayer distances (a) and biaxial strains (b), exhibiting an intrinsic Ohmic contact.

Figure S6. (a-b) The effective potentials (V_{eff}) and (c-d) the spin density (ρ_s) along the vertical z-direction of VSe₂/Sc₂CO₂ and VTe₂/Sc₂CO₂ with polarized states Sc-P \uparrow and Sc-P \downarrow .

Figure S7. Electric field strength (\vec{E}_{pi}) of electric dipole (\vec{P}) at the heterojunction interface.

Figure S8

Figure S8. Device model diagrams of (a) field effect transistor and (b) memory.