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I. SUPPLEMENTARY INFORMATION

A. Derivation of Eq. (1)

The nuclear and electronic Hamiltonian, in atomic units, is given by

H =−∑
i

1
2mi

∇
2
i +V (R,r)+E zlab−EZlab

a −EZlab
b , (A.1)

where zlab corresponds to the z coordinate of the position of the electron, Zlab
a corresponds

to the z coordinate of the position of the (a) nucleus, and Zlab
b corresponds to the z coordi-

nate of the position of (b) nucleus, all in the laboratory frame, r the spatial coordinate of

the electron relative to the geometric center of the nuclei (CGN), and R the internuclear

vector (pointing from the nucleus (b) to the nucleus (a)). We define the geometric center

of the nuclei as the average of the nuclear positions, namely

RCGN =
1
2

Rlab
a +

1
2

Rlab
b ,

and the center of mass of the nuclei as

RCGN =
ma

ma +mb
Rlab

a +
mb

ma +mb
Rlab

b ,

where ma is the mass of the (a) nucleus and mb is the mass of the (a) nucleus.

Introducing into Eq. (A.1), the definition of the electronic coordinates with respect to

the geometric center of the nuclei RCGN

rlab = r+RCGN

= r+
mb−ma

2(ma +mb)
R+RCMN ,

and the definition of the nuclear positions with respect to the center of mass of the nuclei

RCMN

Rlab
a =+

mb

ma +mb
R+RCMN ,

and

Rlab
b =− ma

ma +mb
R+RCMN .

We obtain the following Hamiltonian, obviating the contribution of the position of nuclear

center of mass (constant term),

H =− 1
2µab

∇
2
R−

1
2

∇
2
r +V (R,r)+E z− mb−ma

2(ma +mb)
ERcosθ .

The corresponding Schrödinger equation is Eq. (1).
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B. The prolate spheroidal treatment and the electronic basis

The electronic Hamiltonian is given by

He(R,θ ,E) =−
1
2

∇
2
r +V (R,r)+E z− 1

2
αERcosθ

with

V (R,r) =− 1
ra
− 1

rb
+

1
R
,

where rα is the distance between the electron and the nuclei α (α = a,b). The position of

the nuclei (a) and (b) are given by

Ra =+
1
2

R(t)sinθ(t) x̂+
1
2

R(t)cosθ(t) ẑ

and

Rb =−
1
2

R(t)sinθ(t) x̂− 1
2

R(t)cosθ(t) ẑ ,

with respect to the geometric center of the nuclei RCGN. To apply the prolate spheroidal

treatment in its usual formulation, we require the nuclei to be over the ẑ axis. To ensure

so, we make the following transformation

A =
1
R


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ


over the electron and nuclear coordinates, which is a rotation and a contraction. So a

vector v in these new coordinates is ṽ = Av. In this coordinates the position of the nuclei

(a) and (b) are given by

R̃a =+
1
2

ˆ̃z

and

R̃b =−
1
2

ˆ̃z ,

respectively. So the nuclei are fixed in the ẑ axis. The Hamiltonian now reads

He(R,θ ,E) =−
1

2R2 ∇
2
r̃ +

1
R

V (R̃, r̃)+E R(z̃cosθ − x̃sinθ)− 1
2

αERcosθ . (B.1)

Having done so, we now introduce the prolate spheroidal coordinates (λ , µ, φ), where

λ = |r̃− R̃a|+ |r̃− R̃b| ,

µ = |r̃− R̃a|− |r̃− R̃b| ,
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and φ is the azimuthal angle. Note that 1≤ λ ≤ ∞, −1≤ µ ≤ 1, and 0≤ φ ≤ 2π. We need

this coordinate system to allow us to write the Coulomb interaction as

1
R

V (r̃, R̃(t)) =− 4λ

R(λ 2−µ2)
+

1
R
,

and since the volume element is dV = (1/2)3R3(λ 2−µ2)dλ dµ dφ , the coordinates remove

the singularities of the potential when projecting into a basis. The factor R3 stands to

compensate for the contraction of the coordinates. Note also that the overall electronic

Hamiltonian in Eq. (B.1) is just a linear combination of operators, where the coefficients

of this linear combination are functions of R and θ . Hence, we only need to calculate the

matrix elements of these operators just once to find the matrix elements of the Hamiltonian

for all configurations (values of R and θ).

Finally, we define the following basis,

γν ,η ,m (λ ,µ,φ) =
1√
2π

um,ν(λ )vm,η(µ)eimφ , (B.2)

with

um,ν(λ ) = Nm
ν e−α(λ−1)(λ 2−1)|m|/2L2|m|

ν−|m|(2α(λ −1))

and

vm,η(µ) = Mm
η Pm

η (µ) .

Here Lq
p(x) are the associated Legendre functions, Pq

p(x) the associated Laguerre Polyno-

mials,

Nm
ν =

√
(2α)2|m|+1 (ν−|m|)!

(ν + |m|)!
,

Mm
η =

√(
η +

1
2

)
(η−m)!
(η +m)!

,

and α = e0.1i is a complex parameter to represent outgoing waves, preventing unphysical

reflections. The index m is the electron’s angular momentum projection onto the ẑ axis. We

also impose that m = 0,±1,±2, . . . ,±mmax, η = |m|, |m|+1, . . . , |m|+µmax, and ν = |m|, |m|+

1, . . . , |m|+νmax. So mmax, µmax, and νmax are cutoff parameters that control the basis size.

As the reader may note, the previously defined basis is not orthogonal (see Eq. (B.2)).

To obtain an orthonormal basis we solve for the eigenstates of the Hamiltonian He(R,θ ,0)

without the field for R = 2a0. By sorting the eigenstates by their energies, we can define
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the orthonormal electronic basis {ψn}n∈N. This helps us to sparse the matrix elements

of the Hamiltonian, reducing computational costs. In this way, one can define properly〈
ψn
∣∣He
∣∣ψn′

〉
as a function of R and θ .

Finally, we must state that when applying the transformation A to the Schrodinger

equation instead of the Hamiltonian, non-adiabatic terms arise. Our numerical calcula-

tions including or excluding these terms, show no appreciable difference in the analysis

that we show in this work. We attribute this to the difference of mass between the proton

and the electron. Consequently, we omit these terms to speed up our calculations in the

present situation.
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