Supporting information

A first-principle study of the stability, electronic structure, and optical properties of halide double perovskite Rb₂Sn_{1-x}Te_xI₆ for solar cell applications

Muhammad Faizan^{1*}, Jiahao Xie², Ghulam Murtaza³, Carlos Echeverría-Arrondo⁴, Thamraa Alshahrani^{5*}, Kailash Chandra Bhamu⁶, Amel Laref⁷, Iván Mora-Seró^{4*}, Shah Haidar Khan^{1*}

¹Department of Physics, University of Peshawar, Peshawar 25120, Pakistan

²State Key Laboratory of Superhard Materials and School of Materials Science and Engineering, Jilin University, Changchun 130012, China

³Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar 25120, Pakistan

⁴Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló 12006, Spain

⁵Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

⁶School of Chemical Engineering, University of Ulsan, 93 Daehakro, Nam-Gu, Ulsan 44610, South Korea

⁷Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, King Saudi Arabia

*Correspondence: <u>faizanstd@uop.edu.pk</u>, <u>thmalshahrani@pnu.edu.sa</u>, <u>sero@uji.es</u>, <u>shkhan@uop.edu.pk</u>

1. Mechanical Properties

For mechanical properties, the elastic constants are calculated using the well-known stress–strain relationship (Hooke's law)¹ by deforming the unit cell. The elastic tensor C_{ij} can be calculated as

$$\delta_{ij} = C_{ij} \cdot \varepsilon_{ij} \tag{1}$$

where δ_{ij} and ε_{ij} are stress and strain tensors. For cubic symmetry, only three independent components (C₁₁, C₁₂, and C₄₄) are needed. To check the mechanical stability for cubic compounds, the elastic constant must satisfy the generalized Born stability conditions²:

$$1/3(C_{11}+2C_{12}) > 0, C_{11} > 0, C_{44} > 0, \text{ and } 1/2(C_{11}-C_{12}) > 0$$
 (2)

In addition to this, the Voigt-Reuss-Hill model³⁻⁴ can be used to determine the other elastic parameters, such as bulk modulus (B), shear modulus (G), Young's modulus (E), Pugh's index (k = B/G), anisotropy factor (A), and Passion's ratio (**v**) using standard relations. The calculated elastic constants of the pure and doped system are enlisted in Table S5. It is evident that all the system satisfy the Born stability criteria, thus showing the mechanical stability. The Cauchy pressure (C₁₁-C₄₄) gives information about the ductility and brittleness of a compound. The positive (negative) value of C₁₁-C₄₄ indicates the ductile (brittle) nature. From Table S5, it is inferred that the computed values of C₁₁-C₄₄ are positive, implying the ductile nature for all these systems.

Fig. S1. The lattice parameter (top) and volume (bottom) as a function of x in Rb₂Sn_{1-x}Te_xI₆ ($0 \le x \le 1$).

Fig. S2. Calculated band structure of $Rb_2Sn_{0.75}Te_{0.25}I_6$ (a), $Rb_2Sn_{0.50}Te_{0.50}I_6$ (b), and $Rb_2Sn_{0.25}Te_{0.75}I_6$ (c) using HSE06 functional.

Fig. S3. DOS structures of $Rb_2Sn_{0.75}Te_{0.25}I_6$ (left) and $Rb_2Sn_{0.25}Te_{0.75}I_6$ (right) using HSE06 functional.

Fig. S4. (a, c) Calculated real $\varepsilon_1(\omega)$ and (b, d) imaginary $\varepsilon_2(\omega)$ parts of the dielectric function of Rb₂Sn_{0.25}Te_{0.75}I₆ and Rb₂TeI₆ perovskites.

Sort	Rb_2SnI_6	$Rb_2Sn_{0.75}Te_{0.25}I_6$	$Rb_2Sn_{0.50}Te_{0.50}I_6$	$Rb_2Sn_{0.25}Te_{0.75}I_6$	Rb ₂ TeI ₆
Rb-(Sn/Te)/ Å	5.13	5.14/5.14	5.14/5.15	5.15/5.15	5.16
Rb-I/ Å	4.19	4.20	4.20	4.20	4.21
Sn/Te-I(equatorial)/ Å	2.90	2.90/2.96	2.90/2.96	2.90/2.96	2.96
Sn/Te-I(apical)/ Å	2.90	2.90/2.96	2.90/2.96	2.90.2.96	2.96
I- Sn/Te-I (equatorial)/°	180°	180°	180°	180°	180°
I- Sn/Te-I (apical)/°	180°	180°	180°	180°	180°

Table S1. Calculated bond lengths and angles for $Rb_2Sn_{1-x}Te_xI_6$ ($0 \le x \le 1$) alloyed systems.

	t _{eff}	μ_{eff}
0% Te (Rb ₂ SnI ₆)	0.96	0.31
25% Te ($Rb_2Sn_{0.75}Te_{0.25}I_6$)	0.94	0.35
50% Te ($Rb_2Sn_{0.50}Te_{0.50}I_6$)	0.92	0.38
75% Te ($Rb_2Sn_{0.25}Te_{0.75}I_6$)	0.89	0.41
100% Te (Rb ₂ TeI ₆)	0.87	0.44

Table S2. Calculated tolerance factor t_{eff} and octahedral factor μ_{eff} for Rb₂Sn_{1-x}Te_xI₆ ($0 \le x \le 1$).

Table S3. Competing phases considered in calculating the chemical potential space of Rb_2SnI_6 and Rb_2TeI_6 along with their corresponding formation energies in eV.

Limits	ΔH	Limits	ΔH
RbSn	-0.612	Rb ₂ Te	-2.998
RbSn ₃	-0.647	Rb ₂ Te ₃	-3.584
RbI	-3.094	Rb ₂ Te ₅	-3.772
RbI ₃	-3.396	TeI	-0.252
SnI_2	-1.711	Te ₂ I	-0.255
SnI_4	-2.1835	TeI ₄	-0.918
RbSnI ₃	-4.950	Rb ₂ SnTe ₃	-4.226
RbTe	-1.676		

Table S4. Band gaps of $Rb_2Sn_{1-x}Te_xI_6$ ($0 \le x \le 1$) calculated at different levels of theory along with experimental values.

Compound	$E_{g(PBE)}/eV$	$E_{g(mBJ)}/eV$	$E_{g(HSE)}/eV$	Other cal.	Exp:
Rb ₂ SnI ₆	0.13	0.75	1.10	$1.13^{5*}/1.02^{6}$	1.325
$Rb_2Sn_{0.75}Te_{0.25}I_6$	0.64	1.12	1.35		
$Rb_2Sn_{0.50}Te_{0.50}I_6$	0.72	1.19	1.44		
$Rb_2Sn_{0.25}Te_{0.75}I_6$	1.06	1.46	1.67		
Rb ₂ TeI ₆	1.78	2.14	2.18		

*Band gap calculated for tetragonal phase of Rb₂SnI₆

Compounds	C ₁₁	C ₁₂	C ₄₄	$C_{11} - C_{44}$	В	G	Е	ν	А	B/G
Rb_2SnI_6	116.56	65.30	60.10	5.19	82.39	83.31	186.93	0.12	2.34	0.98
$Rb_2Sn_{0.75}Te_{0.25}I_6$	98.51	52.27	40.74	11.53	67.68	61.69	141.95	0.15	1.76	1.09
$Rb_2Sn_{0.50}Te_{0.50}I_6$	109.27	63.73	47.01	16.71	78.91	73.36	168.02	0.14	2.06	1.07
$Rb_2Sn_{0.25}Te_{0.75}I_6$	101.19	61.65	39.45	22.19	74.83	66.63	154.15	0.16	1.99	1.13
Rb ₂ TeI ₆	113.92	51.27	44.22	7.04	72.15	64.18	148.51	0.16	1.41	1.12

Table S5. Calculated elastic constants (in GPa), Bulk moduli (in GPa), Shear moduli (in GPa), Young's moduli (in GPa), Passion's ratio (v), Anisotropy factor (A), and Pugh's ratio, of Rb_2Sn_1 . $_xTe_xI_6$.

References

1. Le Page, Y.; Saxe, P., Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. *Phys. Rev. B* 2002, **65**, 10, 104104.

2. Born, M. In *On the stability of crystal lattices*. *I*, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press: 1940, 160-172.

3. Voigt, W., On the relation between the elasticity constants of isotropic bodies. *Ann. Phys. Chem* 1889, **274**, 573-587.

4. Hill, R., Proc. Phys. Soc.(London). Sect. A 1952, 65, 349-54.

5. Maughan, A. E.; Ganose, A. M.; Almaker, M. A.; Scanlon, D. O.; Neilson, J. R., Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. *Chem. Mater.* 2018, **30**, 11, 3909-3919.

6. Cai, Y.; Xie, W.; Ding, H.; Chen, Y.; Thirumal, K.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G.; Sherburne, M.; Asta, M., Computational Study of Halide Perovskite-Derived A₂BX₆ Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability. *Chem. Mater.* 2017, **29**, 18, 7740-7749.