Electronic supplementary information

The hierarchy of *ab initio* and DFT methods for describing an intramolecular non-covalent Si…N contact in the silicon compounds using electron diffraction geometries

Elena F. Belogolova,^a Sergey A. Shlykov,^{*^b} Alexey V. Eroshin,^b Evgeniya P. Doronina^a and Valery F. Sidorkin^{*^a}

- ^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russian Federation E-mail: <u>svf@irioch.irk.ru</u>
- ^b Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave. 7, 153000 Ivanovo, Russian Federation E-mail: <u>shlykov@isuct.ru</u>

Equation S1. Agreement factor being minimized at least-squares procedure of the GED data:

$$R_{f} = 100 \left[\frac{\sum_{i}^{n} \omega_{i} [s_{i} M_{\exp}(s_{i}) - ks_{i} M_{\text{theor}}(s_{i})]^{2}}{\sum_{i}^{n} \omega_{i} [s_{i} M_{\exp}(s_{i})]^{2}} \right]^{1/2}$$

where: ω_i – weight function; k– scale coefficient (index of resolution), k=s_iM_{exp.}(s_i)/s_iM_{theor.}(s_i), s_iM_{exp.}(s_i), s_iM_{theor.}(s_i) – experimental and theoretical molecular scattering intensities, respectively.

Figure S1. PES of methyl group rotation along with GED data, see also main text. The filled rectangle corresponds to the GED value of the angle with error limit.

Figure S2. The relative energy of 1-methylsilatrane computed at the CCSD/6-311++G(d,p) level as function of the Si…N distance (the value of the total energy in minimum was set to zero). The PES scan with respect to d_{SiN} was performed with increment of 0.01 Å and using the full MP2/6-311++G(d,p) optimization of the remaining geometric parameters.

Figure S3. MP2/6-311++G(d,p) and CCSD(T)/6-311++G(d,p) potential functions of deformation of the Si…N contact in molecules **1a** and **2h** (the value of the total energy in minimum was set to zero). The PES scan with respect to d_{SiN} was performed with increment of 0.01 Å and using the full MP2/6-311++G(d,p) optimization of the remaining geometric parameters.

Figure S4. Difference between the ab initio calculated (with the 6-311G(d,p) basis set) and GED experimental values of the Si-O bond lengths (Δd_{SiO} , Å), as well as the corresponding MAE values (in Å) in molecules XSi(OCH₂CH₂)₃N.

Figure S5. Potential functions of the Si…N contact deformation in the anti-conformer of $(F_3C)F_2SiONMe_2$ (**2h**), $F_3SiCH_2NMe_2$ (**2b**), and 1-methylsilatrane (**1a**) calculated at the B3PW91 and B3PW91-D3(BJ) theory levels.

Figure S6. MP2/6-311++G(d,p) potential functions of the Si \cdots N contact deformation in molecules 1 and 2.

Figure S7. Temperature dependence of conformer C_1 concentration in gas phase as predicted on the base of theoretical calculations at «rigid rotor — harmonic oscillator» approximation. All calculations for conformer C_3 were performed for C_1 equilibrium symmetry which in fact is a qausi- C_3 one (very close to), but, due to difficulties intrinsic to the Gaussian program to keep the symmetry, it was not completely reached. The MP2 results marked by "(a)" correspond to real C_3 symmetry which was easily realized in case of this kind of calculations. Temperature of the GED experiments, from Shen et al (*J. Mol. Struct.* 1980; 64: 257) and this work, along with the GED data of this work, are shown.

vioruu		ipnu	uues	(1) 01 1-110	IIIyisiia		useu o		LII/0 5		Culturons	
Param.	Atoms	N1	N2	Multiplicity	Star	rting valı	ies]	Refined value	es ^b	Vibrational	Gr.
#					ra	r _{h1}	1	ra	r _{h1}	1	corrections	# ^c
					u			u			Λr^{a}	
69	СН	15	30	3	1 0909	1.093	0.077	1 10845	1.104(2)	0.081(2)	0.0017	1
70		10	22	2	1.0016	1.002	0.077	1.10045	1.104(2)	0.081(2)	0.0017	1
70	Сп	12	23	2	1.0910	1.095	0.077	1.10916	1.104(2)	0.081(2)	0.00121	1
71	СН	10	19	1	1.0916	1.093	0.077	1.10916	1.104(2)	0.081(2)	0.00121	1
72	СН	13	25	3	1.0926	1.094	0.077	1.11019	1.105(2)	0.081(2)	0.00116	1
73	СН	13	24	3	1.0967	1.098	0.078	1.11427	1.109(2)	0.082(2)	0.00104	1
74	СН	10	18	3	1.0988	1.1	0.078	1.11643	1.112(2)	0.083(2)	0.00134	1
75	0.0	7	11	2	1 4127	1 415	0.049	1 4 1 9 3 9	1 420(3)	0.053(2)	0.00278	1
76	0 0	6	0	1	1 /127	1.115	0.049	1 / 1030	1.120(3)	0.053(2)	0.00278	1
70	NC	0	10	1	1.4127	1.413	0.040	1.41757	1.420(3)	0.053(2)	0.00278	1
77	NC	2	12	1	1.5065	1.503	0.049	1.46455	1.459(3)	0.053(2)	-0.00373	1
78	NC	2	10	2	1.5063	1.503	0.049	1.46455	1.459(3)	0.053(2)	-0.00373	1
79	СС	13	14	1	1.5371	1.536	0.053	1.53086	1.527(3)	0.058(2)	-0.00123	1
80	CC	11	12	1	1.5371	1.536	0.053	1.53086	1.527(3)	0.058(2)	-0.00123	1
81	CC	9	10	1	1.5371	1.536	0.053	1.53086	1.527(3)	0.058(2)	-0.00124	1
82	Si O	1	6	2	1.6681	1.671	0.047	1.66528	1.667(3)	0.051(2)	0.00305	1
83	SiO	1	7	1	1 668	1 671	0.047	1 66518	1 667(3)	0.051(2)	0.00307	1
0 <i>3</i>		10	10	1	1.000	1.071	0.124	2.06711	2.067(4)	0.031(2)	0.00936	1
04	пп	10	19	1	1.039	1.047	0.124	2.00711	2.007(4)	0.128(2)	0.00830	1
85	нн	22	23	1	1.839	1.847	0.124	2.06/11	2.067(4)	0.128(2)	0.00834	1
86	нн	26	27	1	1.839	1.847	0.124	2.06/11	2.067(4)	0.128(2)	0.00834	1
87	НН	16	17	2	1.7612	1.769	0.123	1.79526	1.794(4)	0.127(2)	0.00765	1
88	НН	24	25	1	1.7612	1.769	0.123	1.79526	1.794(4)	0.127(2)	0.00765	1
89	НН	28	29	3	1.7589	1.771	0.125	1.78702	1.790(4)	0.129(2)	0.0121	1
90	Si C	1	15	1	1.8582	1.858	0.052	1.84905	1.847(4)	0.057(2)	-5.3E-4	1
91	ОН	7	21	3	2.0329	2.04	0 101	2.03214	2.035(4)	0.098(2)	0.00722	2
02	0 H	7	20	2	2.0584	2.065	0.101	2.08380	2.086(4)	0.098(2)	0.00657	2
02	0 11	6	16	1	2.0584	2.005	0.101	2.00307	2.000(4)	0.090(2)	0.00657	2
95	И	0	10	1	2.0364	2.005	0.101	2.06369	2.080(4)	0.098(2)	0.00037	2
94	NH	2	19	3	2.1132	2.116	0.103	2.13047	2.128(4)	0.100(2)	0.00263	2
95	ΝΗ	2	18	1	2.175	2.177	0.103	2.08433	2.081(4)	0.100(2)	0.00189	2
96	ΝΗ	2	22	2	2.175	2.177	0.103	2.08433	2.081(4)	0.100(2)	0.00191	2
97	СН	13	27	1	2.1481	2.153	0.11	1.6688	1.667(3)	0.106(2)	0.00531	2
98	СН	11	23	1	2.1482	2.153	0.11	1.6689	1.667(3)	0.106(2)	0.00527	2
99	СН	9	19	1	2.1481	2.153	0.11	1.6688	1.667(3)	0.106(2)	0.00531	2
100	СН	14	25	2	2.1678	2.172	0.108	2.1325	2.132(4)	0.105(2)	0.00432	2
101	СН	12	21	1	2 1679	2 172	0.108	2 13261	2 132(4)	0.105(2)	0.00428	2
101	СН	14	21	1	2.1680	2.172	0.100	2.13201	2.132(4)	0.105(2)	0.00420	2
102		14	24	1	2.1007	2.172	0.100	2.17495	2.173(4)	0.105(2)	0.00343	2
105	Сп	12	20	1	2.1000	2.172	0.108	2.17493	2.175(4)	0.105(2)	0.00347	2
104	СН	10	16	1	2.1689	2.172	0.108	2.17495	2.173(4)	0.105(2)	0.00343	2
105	СН	9	18	3	2.1706	2.175	0.11	2.15349	2.152(4)	0.107(2)	0.00429	2
106	НН	19	24	1	2.3948	2.406	0.289	2.43808	2.415(5)	0.286(2)	0.01129	2
107	НН	20	27	1	2.3964	2.406	0.288	2.43954	2.415(5)	0.285(2)	0.00973	2
108	НН	16	23	1	2.3945	2.406	0.289	2.43788	2.415(5)	0.286(2)	0.01156	2
109	НН	17	19	1	2.4209	2.43	0.174	1.85444	1.848(4)	0.171(2)	0.00948	2
110	НН	2.1	23	1	2,4209	2.43	0.174	1.85444	1.848(4)	0.171(2)	0.00943	2
111	ни	25	27	-	2 4200	2 43	0.174	1 85//2	1.848(4)	0.171(2)	0.009/19	$\frac{1}{2}$
110		0	11	1	2.7209	2.43	0.174	2 1200	1.0+0(+)	0.171(2)	0.007+7	2
112		0	14	1	2.4249	2.432	0.07	2.4098	2.475(5)	0.007(2)	0.0000	2
115		1	12	1	2.4248	2.452	0.07	2.46969	2.475(5)	0.067(2)	0.00689	2
114	O C	6	10	1	2.4248	2.432	0.07	2.4697	2.475(5)	0.067(2)	0.00683	2
115	НН	19	26	1	2.2851	2.28	0.227	2.68649	2.662(5)	0.224(2)	-0.00554	2
116	ΗH	18	23	1	2.2844	2.28	0.227	2.68578	2.662(5)	0.224(2)	-0.00487	2
117	НН	22	27	1	2.286	2.28	0.227	2.68742	2.662(5)	0.224(2)	-0.00648	2
118	NC	2	11	2	2.3521	2.352	0.071	2.37565	2.374(5)	0.068(2)	1.3E-4	2
119	NC	2	9	1	2,3522	2,352	0.071	2 37565	2.374(5)	0.068(2)	5E-5	2
120	НН	16	18	1	2 3008	2.352	0.178	2.37505	2.374(3) 2.331(5)	0.175(2)	0.00758	2
120		20	22	1	2.3770	2.407	0.170	2.33042	2.331(3)	0.175(2)	0.00772	2
121	пп	20	22	1	2.3990	2.407	0.170	2.33032	2.331(3)	0.175(2)	0.00772	2
122	нн	24	26	1	2.3997	2.407	0.1/8	2.33642	2.551(5)	0.1/5(2)	0.0076	2
123	Si H	1	28	1	2.4554	2.465	0.124	2.45968	2.463(5)	0.121(2)	0.0095	2
124	Si H	1	29	1	2.458	2.465	0.124	2.46227	2.463(5)	0.121(2)	0.00693	2
125	Si H	1	30	1	2.458	2.465	0.124	2.46227	2.463(5)	0.121(2)	0.00688	2
126	CC	10	14	2	2.499	2.498	0.07	2.46638	2.463(5)	0.066(2)	-0.00114	2
127	СС	10	12	1	2.4986	2.498	0.07	2.46589	2.463(5)	0.066(2)	-6.7E-4	2
128	СН	14	19	1	2,5014	2,499	0.143	2,73284	2.723(5)	0.140(2)	-0.00275	2.
120	Сн	12	27	1	2.5014	2.100	0.143	2.73204	2 723(5)	0.130(2)	-0.00275	2
141		14	41	1	2.3023	2.477	0.143	2.15515	2.123(3)	0.137(4)	-0.0050	4

Table S1. Starting (QC) and refined (GED) values for internuclear distances (r_a , r_{h1}) and vibrational amplitudes (*l*) of 1-methylsilatrane based on the B3LYP/6-311G** calculations

130	СН	10	23	1	2.501	2.499	0.143	2.73244	2.723(5)	0.140(2)	-0.00232	2
131	НН	25	26	1	2.6151	2.622	0.167	2.62368	2.620(5)	0.164(2)	0.00701	2
132	НН	21	22	1	2.6153	2.622	0.167	2.62379	2.620(5)	0.164(2)	0.00687	2
133	НН	17	18	1	2.6152	2.622	0.167	2.62369	2.620(5)	0.164(2)	0.00696	2
134	Si N	1	2	1	2.4265	2.449	0.182	2.50375	2.514(5)	0.179(2)	0.02276	2
135	СН	12	18	1	2.5795	2.581	0.156	2.50717	2.499(5)	0.153(2)	0.0014	2
136	СН	14	22	1	2.5805	2.581	0.156	2.50817	2.499(5)	0.153(2)	4.1E-4	2
137	СН	10	26	1	2.5799	2.581	0.156	2.50756	2.499(5)	0.153(2)	1E-3	2
138	Si C	1	13	1	2.7311	2.746	0.069	2.72641	2.740(5)	0.066(2)	0.01532	2
139	Si C	1	9	2	2.7311	2.746	0.069	2.72641	2.740(5)	0.066(2)	0.0153	2
140	ОН	8	27	1	2.7382	2.754	0.166	2.26574	2.270(5)	0.163(2)	0.01619	2
141	ОН	7	23	1	2.7382	2.754	0.166	2.26576	2.270(5)	0.163(2)	0.01615	2
142	ОН	6	19	1	2.7381	2.754	0.166	2.26576	2.270(5)	0.163(2)	0.01622	2
143	ΝΟ	2	7	1	2.5609	2.571	0.113	2.67749	2.683(5)	0.110(2)	0.00995	2
144	NO	2	6	1	2.5612	2.571	0.113	2.67768	2.683(5)	0.110(2)	0.00973	2
145	ΝΟ	2	8	1	2.5611	2.571	0.113	2.67768	2.683(5)	0.110(2)	0.00976	2
146	00	6	8	1	2.779	2.79	0.095	2.80414	2.812(6)	0.092(2)	0.01069	2
147	00	7	8	1	2.7797	2.79	0.096	2.80475	2.812(6)	0.092(2)	0.01001	2
148	00	6	7	1	2.7789	2.79	0.096	2.80404	2.812(6)	0.092(2)	0.01079	2
149	0 C	6	15	1	2.8018	2.81	0.102	2.74863	2.754(5)	0.098(2)	0.00869	2
150	0 C	7	15	1	2.8026	2.81	0.102	2.74943	2.754(5)	0.099(2)	0.00788	2
151	0 C	8	15	1	2.8017	2.81	0.102	2.74853	2.754(5)	0.098(2)	0.00878	2
152	NH	2	24	1	2.7227	2.729	0.156	2.81459	2.813(6)	0.152(2)	0.00622	2
153	NH	2	20	1	2.7227	2.729	0.156	2.8146	2.813(6)	0.153(2)	0.0062	2
154	NH	2	16	1	2.7228	2.729	0.156	2.8147	2.813(6)	0.153(2)	0.00617	2
155	СН	11	27	1	2.8731	2.883	0.208	2.87474	2.870(6)	0.205(2)	0.00958	2
156	СН	13	19	1	2.8719	2.883	0.209	2.87362	2.870(6)	0.206(2)	0.01078	2
157	СН	9	23	1	2.8716	2.883	0.209	2.87332	2.870(6)	0.206(2)	0.01112	2
158	OH	6	28	1	2.9608	2.972	0.247	2.91838	2.910(6)	0.244(2)	0.01164	2
159	O H	7	29	1	2.9652	2.972	0.247	2.92275	2.910(6)	0.244(2)	0.00723	2
160	OH	8	30	1	2.9638	2.972	0.247	2.92124	2.909(6)	0.243(2)	0.00869	2
161	СН	10	24	1	2.9855	3.002	0.218	3.03434	3.036(6)	0.214(2)	0.01658	2
162	СН	14	20	1	2.9865	3.002	0.218	3.03536	3.036(6)	0.215(2)	0.01553	2
163	СН	12	16	1	2.9852	3.002	0.218	3.03407	3.036(6)	0.215(2)	0.01683	2
164	НН	24	27	2	3.0434	3.059	0.126	2.67025	2.679(5)	0.130(3)	0.01519	3
105	нн	10	19	1	3.0434	3.059	0.120	2.07025	2.079(5)	0.130(3)	0.01519	3
100	ОП	0	24	1	2.0221	3.00	0.327	2 21901	3.322(7)	0.330(3)	0.03733	2
107	ОП	0	20	1	3.0251	3.00	0.329	2 21715	3.322(7)	0.333(3)	0.03001	2
100	С П с: ц	1	24	1	2.0401	3.00	0.328	2 16777	3.322(7)	0.331(3)	0.03813	2
109	51 П	1	24	1	3.0401	3.003	0.181	3.10777	3.180(0)	0.184(3)	0.02323	3
170	SI II	1	16	1	3.0402	3.003	0.181	3.10790	3.180(0)	0.185(3)	0.02318	3
171	0 H	6	20	1	3.04	3.003	0.181	3.10771	3.046(6)	0.185(3)	0.02330	3
172	ОН	8	29	1	3.0816	3 104	0.252	3.04547	3.046(6)	0.256(3)	0.02264	3
173	ОН	7	30	1	3.0863	3 104	0.252	3 05016	3.046(6)	0.256(3)	0.01794	3
175	СС	10	13	1	3 1 5 5 1	3 165	0.11	3 12235	3.128(6)	0.230(3)	0.01	3
176	CC	11	14	1	3.1559	3,165	0.11	3.12314	3.128(6)	0.114(3)	0.00922	3
177	CC	9	12	1	3.155	3.165	0.11	3,12215	3.128(6)	0.114(3)	0.01018	3
178	нн	22	26	1	3.014	3.021	0.229	2.96117	2.949(6)	0.233(3)	0.00651	3
179	НН	18	22	1	3.0132	3.021	0.229	2.96037	2.949(6)	0.233(3)	0.00735	3
180	НН	18	26	1	3.0135	3.021	0.229	2.96065	2.949(6)	0.233(3)	0.007	3
181	СН	12	26	1	3.1272	3.134	0.137	3.09306	3.093(6)	0.141(3)	0.00669	3
182	СН	10	22	1	3.1267	3.134	0.137	3.09256	3.093(6)	0.141(3)	0.00718	3
183	СН	14	18	1	3.1269	3.134	0.137	3.09266	3.093(6)	0.141(3)	0.00705	3
184	Si C	1	14	1	3.194	3.213	0.105	3.15956	3.175(6)	0.109(3)	0.0189	3
185	Si C	1	10	1	3.194	3.213	0.105	3.15966	3.175(6)	0.109(3)	0.01887	3
186	Si C	1	12	1	3.1941	3.213	0.105	3.15975	3.175(6)	0.109(3)	0.01878	3
187	0 C	6	13	1	3.257	3.279	0.184	3.37603	3.388(7)	0.187(3)	0.02193	3
188	0 C	8	11	1	3.2579	3.279	0.185	3.37697	3.387(7)	0.189(3)	0.02106	3
189	0 C	7	9	1	3.2567	3.279	0.184	3.37569	3.388(7)	0.188(3)	0.0223	3
190	OH	7	22	2	3.3437	3.36	0.102	3.35664	3.370(7)	0.106(3)	0.01658	3
191	ОН	6	18	1	3.3437	3.36	0.102	3.35664	3.370(7)	0.106(3)	0.01656	3
192	СН	12	19	1	3.3734	3.381	0.104	3.4047	3.409(7)	0.108(3)	0.00745	3
193	СН	14	23	2	3.3736	3.381	0.104	3.4049	3.409(7)	0.108(3)	0.00721	3
194	ΝΗ	2	21	1	3.3111	3.321	0.103	3.29564	3.302(7)	0.106(3)	0.0095	3
195	ΝΗ	2	25	1	3.3111	3.321	0.103	3.29564	3.302(7)	0.106(3)	0.00949	3
196	ΝΗ	2	17	1	3.3111	3.321	0.103	3.29574	3.302(7)	0.106(3)	0.00941	3

197	НН	19	27	1	3.5377	3.549	0.157	3.67428	3.678(7)	0.161(3)	0.01111	3
198	НН	23	27	1	3.5384	3.549	0.157	3.67488	3.678(7)	0.161(3)	0.01044	3
199	НН	19	23	1	3.5373	3.549	0.157	3.67388	3.678(7)	0.161(3)	0.01151	3
200	СН	9	24	1	3.5364	3.562	0.266	3.65867	3.664(7)	0.270(3)	0.02571	3
201	СН	13	20	1	3.5377	3.562	0.268	3.66021	3.664(7)	0.272(3)	0.02446	3
202	СН	11	16	1	3.5359	3.562	0.267	3.65827	3.664(7)	0.271(3)	0.02626	3
203	0 C	7	14	1	3.5573	3.576	0.113	3.52897	3.544(7)	0.117(3)	0.0191	3
204	O C	8	10	1	3.557	3.576	0.113	3.52877	3.544(7)	0.117(3)	0.01936	3
205	0 C	6	12	1	3.557	3.576	0.113	3.52867	3.544(7)	0.117(3)	0.01937	3
206	O C	6	14	1	3.5853	3.601	0.12	3.65633	3.668(7)	0.124(3)	0.01591	3
207	0 C	7	10	1	3.5851	3.601	0.121	3.65604	3.668(7)	0.124(3)	0.01619	3
208	0 C	8	12	1	3.5859	3.601	0.121	3.65685	3.668(7)	0.125(3)	0.01539	3
209	ОН	/	27	1	3.575	3.606	0.236	3.31906	3.333(7)	0.240(3)	0.03099	3
210		9	14	1	3.000	3.013	0.081	2 5 9 5 9	3.591(7)	0.085(3)	0.00731	3
211		12	13	1	3.0004	2.612	0.081	2 5 9 5 2	3.391(7)	0.085(3)	0.00083	2
212	0 8	8	10	1	3.0038	3.606	0.081	3.3032	3.391(7)	0.083(3)	0.00731	3
213	ОН	6	23	1	3.5745	3.606	0.236	3 31858	3.333(7)	0.240(3)	0.03154	3
214	SiH	1	27	1	3 5825	3.614	0.230	3 16463	3 183(6)	0.240(3)	0.03145	3
216	SiH	1	23	1	3.5827	3.614	0.2	3.16481	3.183(6)	0.203(3)	0.03124	3
217	SiH	1	19	1	3.5827	3.614	0.199	3.1648	3.183(6)	0.203(3)	0.03129	3
218	Si H	1	25	1	3.604	3.631	0.102	3.58026	3.604(7)	0.106(3)	0.02713	3
219	Si H	1	17	1	3.604	3.631	0.102	3.58026	3.604(7)	0.106(3)	0.02715	3
220	Si H	1	21	1	3.604	3.631	0.103	3.58017	3.604(7)	0.106(3)	0.02721	3
221	0 C	7	13	1	3.706	3.726	0.089	3.68062	3.698(7)	0.092(3)	0.01967	3
222	0 C	8	9	1	3.7055	3.726	0.089	3.68012	3.698(7)	0.092(3)	0.02018	3
223	0 C	6	11	1	3.7055	3.726	0.089	3.68002	3.698(7)	0.092(3)	0.02021	3
224	ОН	6	30	1	3.7161	3.759	0.12	3.68397	3.722(7)	0.124(3)	0.04252	3
225	ОН	7	28	1	3.7153	3.759	0.12	3.68307	3.722(7)	0.124(3)	0.04338	3
226	ОН	8	29	1	3.7161	3.759	0.12	3.68397	3.722(7)	0.124(3)	0.04254	3
227	нн	19	25	1	3.7924	3.807	0.228	3.90479	3.906(8)	0.232(3)	0.0149	3
228	нн	21	27	1	3.7939	3.807	0.227	3.90623	3.906(8)	0.231(3)	0.01349	3
229	нн	1/	12	1	3.792	3.807	0.228	2 80206	3.900(8)	0.232(3)	0.01557	3
230		9	13	1	3.0040	3.822	0.131	3.80290	3.810(8)	0.134(3) 0.135(3)	0.01740	3
232		9	11	1	3.8037	3.822	0.131	3 80268	3.816(8)	0.135(3) 0.135(3)	0.01035	3
232	нн	19	22	1	3.8511	3.862	0.166	4.02805	4.031(8)	0.170(3)	0.01049	3
234	НН	23	26	1	3.8512	3.862	0.166	4.02805	4.031(8)	0.170(3)	0.01042	3
235	НН	18	27	1	3.8512	3.862	0.166	4.02804	4.031(8)	0.170(3)	0.01042	3
236	НН	18	24	1	3.9689	4.001	0.245	4.01846	4.035(8)	0.249(3)	0.03242	3
237	НН	20	26	1	3.9699	4.001	0.245	4.01932	4.035(8)	0.248(3)	0.03148	3
238	НН	16	22	1	3.9687	4.001	0.245	4.01827	4.035(8)	0.249(3)	0.0326	3
239	НН	17	24	1	3.998	4.031	0.311	4.01548	4.023(8)	0.315(3)	0.03256	3
240	НН	20	25	1	3.9998	4.031	0.312	4.01744	4.023(8)	0.316(3)	0.03083	3
241	НН	16	21	1	3.9973	4.031	0.312	4.01486	4.023(8)	0.316(3)	0.03333	3
242	СН	11	18	1	3.9382	3.951	0.157	3.87392	3.880(8)	0.169(10)	0.01319	4
243	СН	9	26	1	3.9386	3.951	0.157	3.87432	3.880(8)	0.169(10)	0.0128	4
244	СН	13	22	1	3.9391	3.951	0.157	3.87494	3.880(8)	0.170(10)	0.01226	4
245	СЧ	11	20	1	4.081	4.104	0.151	4.05452	4.070(8)	0.164(10)	0.02255	4
240	Си	0	10	1	4.0804	4.104	0.131	4.03374	4.070(8)	0.104(10) 0.164(10)	0.02317	4 1
247		9	15	1	4.0803	4.104	0.104	4.05554	4.070(8)	0.104(10) 0.117(10)	0.02328	4
249		13	15	1	4,1083	4,131	0.104	4.09582	4,116(8)	0.117(10)	0.02303	4
250	CC	11	15	1	4.1092	4.131	0.104	4.09672	4.116(8)	0.117(10)	0.02214	4
251	СН	12	24	1	4.165	4.181	0.15	4.20585	4.216(8)	0.163(10)	0.01608	4
252	СН	10	20	1	4.1647	4.181	0.151	4.20557	4.216(8)	0.164(10)	0.01641	4
253	СН	14	16	1	4.1648	4.181	0.15	4.20566	4.216(8)	0.163(10)	0.01634	4
254	СН	10	25	1	4.1647	4.184	0.135	4.1415	4.155(8)	0.148(10)	0.01891	4
255	СН	14	21	1	4.1655	4.184	0.135	4.14229	4.155(8)	0.148(10)	0.01809	4
256	СН	12	17	1	4.1644	4.184	0.135	4.1413	4.155(8)	0.148(10)	0.01915	4
257	Si H	1	18	1	4.1071	4.138	0.127	4.05704	4.083(8)	0.140(10)	0.03059	4
258	Si H	1	26	1	4.1071	4.138	0.127	4.05704	4.083(8)	0.140(10)	0.03058	4
259	S1 H		22		4.1072	4.138	0.127	4.05714	4.083(8)	0.140(10)	0.03053	4
200	нн	14	28	1	4.2427	4.25	0.51	4.39482	4.3/8(9)	0.323(10)	0.00/11	4
201	пп ци	20	29 30	1	4.24/1	4.23	0.31	4.39913	4.378(9)	0.323(10) 0.323(10)	0.00273	4 ⊿
263	СН	13	28	1	4,2503	4,273	0.255	4.28829	4.294(9)	0.323(10) 0.268(10)	0.02264	4
200	~	110	0	I [⊥]			0.200	1.2002)	1.2/1(/)	5.200(10)	5.02204	<u> </u>

264	СН	9	29	1	4.2539	4.273	0.255	4.29178	4.294(9)	0.268(10)	0.01908	4
265	СН	11	30	1	4.2555	4.273	0.255	4.29348	4.294(9)	0.268(10)	0.01743	4
266	O H	7	18	1	4 1611	4 189	0.185	4 21199	4 230(8)	0.198(10)	0.02764	4
260	ОН	6	26	1	4 1615	4 189	0.185	4 21239	4 230(8)	0.198(10)	0.02726	4
267	ОН	8	20	1	4 162	4 189	0.185	4 21292	4 230(8)	0.198(10)	0.02674	4
260	ОН	7	24	1	4.102	4.107	0.103	4 38798	4.230(0)	0.190(10)	0.0305	4
20)	ОН	6	20	1	4.2793	4.31	0.177	4 38774	4.410(9)	0.190(10)	0.03076	4
270	ОН	8	16	1	4.279	4.31	0.178	4.3876	4.410(9)	0.191(10)	0.03084	4
271		6	25	1	4.279	4.31	0.178	4.3070	4.410(9)	0.191(10)	0.03084	4
272	ОП	0	23	1	4.2000	4.322	0.203	4.41935	4.444(9)	0.217(10)	0.03328	4
275	ОП	0	21	1	4.2874	4.322	0.200	4.42023	4.444(9)	0.219(10)	0.03448	4
274	СИ	15	24	1	4.2802	4.322	0.203	4.41090	4.444(9)	0.218(10)	0.03308	4
275	СН	15	24	1	4.3142	4.342	0.199	4.43037	4.448(9)	0.212(10)	0.02795	4
270	СН	15	10	1	4.3147	4.342	0.199	4.43089	4.448(9)	0.212(10)	0.02745	4
277	СН	15	20	1	4.3152	4.342	0.2	4.43141	4.448(9)	0.212(10)	0.02694	4
278	0 H	6	27	1	4.3322	4.36	0.148	4.11293	4.135(8)	0.161(10)	0.02815	4
279	OH	8	23	1	4.3326	4.36	0.148	4.11334	4.135(8)	0.161(10)	0.02779	4
280	ОН	1	19	1	4.3321	4.36	0.148	4.11274	4.135(8)	0.161(10)	0.02832	4
281	СН	9	28	1	4.3447	4.378	0.256	4.31241	4.329(9)	0.269(10)	0.03297	4
282	СН	11	29	1	4.3489	4.378	0.256	4.31659	4.329(9)	0.269(10)	0.02874	4
283	СН	13	30	1	4.3474	4.378	0.256	4.31508	4.329(9)	0.269(10)	0.03024	4
284	СН	14	17	1	4.4119	4.429	0.131	4.33731	4.349(9)	0.144(10)	0.01693	4
285	СН	10	21	1	4.4116	4.429	0.131	4.33701	4.349(9)	0.144(10)	0.01724	4
286	СН	12	25	1	4.4125	4.429	0.132	4.33791	4.349(9)	0.144(10)	0.0163	4
287	СН	13	23	2	4.4164	4.434	0.116	4.31334	4.327(9)	0.129(10)	0.01757	4
288	СН	11	19	1	4.4163	4.434	0.116	4.31324	4.327(9)	0.129(10)	0.01769	4
289	НН	16	24	1	4.4646	4.503	0.275	4.63998	4.661(9)	0.287(10)	0.03853	4
290	НН	20	24	1	4.4657	4.503	0.276	4.64118	4.661(9)	0.289(10)	0.03745	4
291	НН	16	20	1	4.4642	4.503	0.275	4.63958	4.661(9)	0.288(10)	0.03899	4
292	СН	13	17	1	4.4991	4.529	0.185	4.41986	4.441(9)	0.198(10)	0.02965	4
293	СН	11	25	1	4.5004	4.529	0.185	4.42108	4.441(9)	0.198(10)	0.02842	4
294	СН	9	21	1	4.4986	4.529	0.185	4.41937	4.441(9)	0.198(10)	0.03015	4
295	ОН	8	17	1	4.508	4.543	0.14	4.40054	4.430(9)	0.153(10)	0.03529	4
296	ОН	7	25	1	4.5088	4.543	0.14	4.40122	4.430(9)	0.153(10)	0.03455	4
297	ОН	6	21	1	4.5078	4.543	0.14	4.40023	4.430(9)	0.153(10)	0.03552	4
298	N C	2	15	1	4.2832	4.307	0.183	4.34558	4.360(9)	0.196(10)	0.02376	4
299	СН	11	24	1	4.5536	4.582	0.175	4.63051	4.651(9)	0.188(10)	0.0284	4
300	СН	13	16	1	4.5529	4.582	0.174	4.62988	4.651(9)	0.187(10)	0.02908	4
301	СН	9	20	1	4.5528	4.582	0.175	4.62973	4.651(9)	0.188(10)	0.02923	4
302	ОН	7	26	1	4.5367	4.569	0.134	4.52047	4.548(9)	0.147(10)	0.03208	4
303	ОН	8	18	1	4.5365	4.569	0.134	4.52037	4.548(9)	0.147(10)	0.03224	4
304	ОН	6	22	1	4.5365	4.569	0.134	4.52037	4.548(9)	0.147(10)	0.03224	4
305	нн	17	26	1	4.5592	4.578	0.214	4.42428	4.431(9)	0.227(10)	0.01881	4
306	НН	18	21	1	4.5587	4.578	0.214	4.42377	4.431(9)	0.227(10)	0.01932	4
307	НН	22	25	1	4.56	4.578	0.214	4.42499	4.431(9)	0.227(10)	0.0181	4
308	НН	22	24	1	4.5859	4.608	0.178	4.55634	4.570(9)	0.191(10)	0.02218	4
309	НН	18	20	1	4.5853	4.608	0.178	4.55574	4.571(9)	0.191(10)	0.02283	4
310	НН	16	26	1	4.5856	4.608	0.178	4.55594	4.570(9)	0.191(10)	0.02255	4
311	СН	15	17	1	4.7408	4.777	0.15	4.72061	4.752(9)	0.163(10)	0.03667	4
312	СН	15	21	2	4.7411	4.777	0.15	4.72091	4.752(9)	0.163(10)	0.03637	4
313	НН	16	28	1	4.7278	4.78	0.295	4.79908	4.832(10)	0.308(10)	0.05264	4
314	НН	24	30	1	4.7296	4.78	0.295	4.80086	4.832(10)	0.308(10)	0.05084	4
315	НН	20	29	1	4.7313	4.78	0.295	4.80256	4.832(10)	0.308(10)	0.04917	4
316	НН	17	28	1	4.7831	4.822	0.318	4.72085	4.737(9)	0.331(10)	0.03908	4
317	НН	21	29	1	4.7875	4.822	0.318	4.72513	4.737(9)	0.331(10)	0.0347	4
318	НН	25	30	1	4.7858	4.822	0.318	4.72342	4.737(9)	0.331(10)	0.0364	4
319	НН	23	24	1	4.7984	4.822	0.199	4.84458	4.859(10)	0.212(10)	0.0236	4
320	НН	19	20	1	4.7988	4.822	0.199	4.845	4.859(10)	0.212(10)	0.02326	4
321	НН	16	27	1	4.7986	4.822	0.199	4.84479	4.859(10)	0.212(10)	0.02341	4
322	НН	25	28	1	4.8194	4.86	0.319	4.89302	4.911(10)	0.332(10)	0.04016	4
323	НН	17	29	1	4.8224	4.86	0.319	4.89602	4.911(10)	0.332(10)	0.03717	4
324	НН	21	30	1	4.8245	4.859	0.319	4.89822	4.911(10)	0.332(10)	0.03498	4
325	СН	9	25	1	4.8826	4.913	0.155	4.89476	4.920(10)	0.168(10)	0.0307	4
326	СН	13	21	1	4.8835	4.913	0.156	4.89571	4.920(10)	0.169(10)	0.02983	4
327	СН	11	17	1	4.8823	4.913	0.155	4.89448	4.920(10)	0.168(10)	0.03104	4
328	CC	14	15	1	4.9182	4.944	0.117	4.87418	4.896(10)	0.130(10)	0.02558	4
329	CC	10	15	1	4.9183	4.944	0.117	4.87417	4.896(10)	0.130(10)	0.02551	4
330	CC	12	15	1	4.9187	4.944	0.117	4.87467	4.896(10)	0.130(10)	0.02505	4

331	ΝH	2	29	2	4 7681	4 802	0.23	4 83895	4 861(10)	0.243(10)	0.03411	4
332	NH	2	30	1	4.7699	4.802	0.23	4 84066	4.861(10)	0.243(10)	0.03239	4
333	СН	13	29	1	4.7077	5.043	0.128	4 98537	5.041(10)	0.243(10) 0.141(10)	0.05959	4
334	СН	9	30	1	4 984	5.043	0.128	4 98576	5.041(10)	0.141(10)	0.05925	4
335	СН	11	28	1	4 9826	5.043	0.128	4 98436	5.041(10)	0.141(10)	0.06064	4
336	нн	21	26	1	5.0283	5.058	0.120	5.00071	5.041(10)	0.141(10)	0.0302	4
337	нн	18	25	1	5.0205	5.058	0.177	5.00002	5.024(10)	0.190(10)	0.0309	4
338	нн	17	22	1	5.0275	5.059	0.177	4 99992	5.024(10)	0.190(10)	0.03107	4
339	нн	24	29	1	5 1546	5 222	0.177	5 30968	5.024(10)	0.190(10)	0.06721	4
340	нн	20	28	1	5 154	5 222	0.240	5 30914	5.364(11)	0.261(10)	0.06775	4
340	нн	16	30	1	5 1556	5 222	0.249	5 3107	5.364(11)	0.262(10)	0.06622	4
342	СН	10	28	1	5 2046	5 235	0.248	5 15531	5.175(10)	0.201(10)	0.03067	4
342	СН	12	20	1	5 200	5.235	0.225	5 15071	5.175(10)	0.238(10)	0.02627	4
343	СН	14	29	1	5 2081	5.235	0.225	5 15991	5.175(10)	0.238(10)	0.02027	4
344	СН	14	27	1	5 2121	5 251	0.225	1 6056	3.173(10)	0.230(10)	0.02714	4
245	СЦ	15	27	1	5 2127	5 251	0.220	4.0950	4.722(9)	0.239(10)	0.03884	4
240	СП	15	10	1	5.2127	5.251	0.226	4.09018	4.722(9)	0.239(10)	0.03824	4
249	СП	13	19	1	5.2905	5.251	0.220	4.09340	4.722(9)	0.239(10)	0.03892	4
348	СИ	14	28	1	5.2805	5.314	0.21	5.27205	5.297(11)	0.223(10)	0.03334	4
250	СП	10	29	1	5.204	5.314	0.21	5.27014	5.297(11)	0.223(10)	0.02982	4
350	СН	12	30	1	5.285	5.314	0.21	5.27/14	5.296(11)	0.223(10)	0.0288	4
351	нн	1/	27	1	5.3172	5.347	0.141	5.16179	5.187(10)	0.154(10)	0.02953	4
352	нн	19	21	1	5.317	5.347	0.141	5.16159	5.187(10)	0.154(10)	0.02969	4
353	нн	23	25	1	5.3175	5.347	0.141	5.16209	5.18/(10)	0.154(10)	0.02922	4
354	НН	27	30	1	5.3177	5.344	0.316	4.76799	4.767(9)	0.358(86)	0.02635	5
355	НН	23	29	1	5.3186	5.344	0.316	4.76885	4.767(9)	0.357(86)	0.02543	5
356	НН	19	28	1	5.3136	5.344	0.316	4.76395	4.767(9)	0.357(86)	0.03038	5
357	НН	17	25	1	5.5443	5.589	0.221	5.49802	5.530(11)	0.263(86)	0.04458	5
358	НН	21	25	1	5.5455	5.589	0.222	5.49935	5.530(11)	0.264(86)	0.04329	5
359	НН	17	21	1	5.5437	5.589	0.221	5.49743	5.530(11)	0.263(86)	0.04517	5
360	НН	21	24	1	5.6275	5.67	0.186	5.70275	5.736(11)	0.228(86)	0.04216	5
361	НН	16	25	1	5.6269	5.67	0.186	5.70213	5.736(11)	0.228(86)	0.04273	5
362	НН	17	20	1	5.6268	5.67	0.187	5.70207	5.736(11)	0.229(86)	0.04289	5
363	СН	14	29	1	5.6223	5.673	0.161	5.58524	5.629(11)	0.202(86)	0.05108	5
364	СН	12	28	1	5.6199	5.673	0.161	5.58284	5.629(11)	0.202(86)	0.05351	5
365	СН	10	30	1	5.6223	5.673	0.161	5.58524	5.629(11)	0.202(86)	0.05111	5
366	НН	27	28	1	5.7048	5.762	0.274	5.19881	5.237(10)	0.315(86)	0.05739	5
367	НН	23	30	1	5.7091	5.762	0.274	5.20308	5.237(10)	0.315(86)	0.05307	5
368	НН	19	29	1	5.7076	5.762	0.273	5.20157	5.237(10)	0.315(86)	0.05456	5
369	НН	17	30	1	5.6897	5.773	0.158	5.67397	5.750(11)	0.200(86)	0.08323	5
370	НН	21	28	2	5.6893	5.773	0.158	5.67347	5.750(11)	0.200(86)	0.08369	5
371	СН	15	18	1	5.8354	5.875	0.135	5.77861	5.813(12)	0.177(86)	0.03935	5
372	СН	15	26	1	5.8353	5.875	0.135	5.77851	5.813(12)	0.177(86)	0.03951	5
373	СН	15	22	1	5.8358	5.875	0.135	5.77901	5.813(12)	0.177(86)	0.03899	5
374	НН	27	29	1	5.909	5.976	0.27	5.45129	5.500(11)	0.312(86)	0.06676	5
375	НН	23	28	1	5.9065	5.976	0.27	5.44878	5.500(11)	0.312(86)	0.06929	5
376	ΗH	19	30	1	5.9085	5.976	0.27	5.45075	5.500(11)	0.311(86)	0.0673	5
377	НН	18	29	1	6.0981	6.136	0.238	6.06844	6.093(12)	0.280(86)	0.03742	5
378	НН	26	28	1	6.0942	6.136	0.238	6.06456	6.093(12)	0.280(86)	0.04132	5
379	НН	22	30	1	6.099	6.136	0.238	6.06935	6.093(12)	0.280(86)	0.03657	5
380	НН	18	28	1	6.1895	6.239	0.235	6.13275	6.169(12)	0.277(86)	0.04924	5
381	НН	22	29	1	6.1938	6.239	0.235	6.13694	6.169(12)	0.277(86)	0.04498	5
382	НН	26	30	1	6.1928	6.239	0.235	6.13604	6.169(12)	0.277(86)	0.04596	5
383	НН	26	29	2	6.5293	6.597	0.175	6.48259	6.543(13)	0.217(86)	0.06748	5
384	ΗH	22	28	1	6.5268	6.597	0.175	6.48019	6.543(13)	0.217(86)	0.06995	5

 $^{[a]}$ r_{h1} values $(r_{h1}=r_a+\Delta r)$ are given for GED results. The vibrational corrections Δr were calculated by the Vibmodule program (Vishnevskiy et al, *J. Phys.: Conf. Ser.*, 2015, **633**, 012076) using the so called second approximation, in which harmonic approach with nonlinear relation between Cartesian and internal coordinates were applied on the base of the force field estimated in the quantum chemical calculations at B3LYP/6-311G** level.

^[b] Values in parentheses for the GED data are full errors estimated as $\sigma(r_{h1}) = [\sigma_{scale}^2 + (2.5\sigma_{LS})^2]^{\frac{1}{2}}$, where $\sigma_{scale} = 0.002r$ and σ_{LS} is a standard deviation in least-squares refinement for internuclear distances and as $3\sigma_{LS}$ for vibration amplitudes. The place-value is such that the last digit of the uncertainty lines up with the last digit of the nominal value.

^[c] All amplitudes were refined being united in 5 groups. The differences between the amplitudes within each group were constrained to the calculated values.

Atomic coordinates of the refined structure of 1-methylsilatrane (for the C_3 conformer) based on the B3LYP/6-311G** calculations

Atom #	Nucleus charge	X	Y	Z
1.	14	0.	0.	0.
2.	7	0.	0.	2.5137
3.	0	2	0.	0.
4.	0	-1.	1.7321	0.
5.	0	-1.	-1.7321	0.
6.	8	1.1479	-1.1479	0.3776
7.	8	0.4202	1.5681	0.3776
8.	8	-1.5681	-0.4202	0.3776
9.	6	1.8096	-1.2564	1.6295
10.	6	0.8872	-1.1117	2.8383
11.	6	0.1833	2.1953	1.6295
12.	6	0.5192	1.3241	2.8383
13.	6	-1.9928	-0.9389	1.6295
14.	6	-1.4063	-0.2125	2.8383
15.	6	0.	0.	-1.8468
16.	1	2.6394	-0.5232	1.6952
17.	1	2.2426	-2.2725	1.6725
18.	1	1.5023	-0.8015	3.7108
19.	1	0.5459	-2.0523	2.3709
20.	1	-0.8666	2.5474	1.6952
21.	1	0.8467	3.0784	1.6725
22.	1	-0.0571	1.7018	3.7108
23.	1	1.5044	1.4989	2.3709
24.	1	-1.7729	-2.0242	1.6952
25.	1	-3.0893	-0.8059	1.6725
26.	1	-1.4452	-0.9003	3.7108
27.	1	-2.0503	0.5534	2.3709
28.	1	-0.1247	-1.0258	-2.236
29.	1	0.9507	0.4049	-2.236
30.	1	-0.826	0.6208	-2.236

vibratio	Shar ani	pintu	ues (i) of 1-metr	Tyfsflau	ane da	sed on	the MP	2/0-3110		uions	
Param.	Atoms	N1	N2	Multiplicity	Star	ting valu	ies]	Refined value	es ^b	Vibrational	Gr.
#					r _a	r _{h1}	1	r _a	r _{h1}	1	corrections	# ^c
					-			-			Δr^{a}	
70	СН	15	29	3	1.0913	1.093	0.076	1.10498	1.101(2)	0.077(2)	0.00166	1
71	СН	12	23	1	1.0926	1.094	0.076	1.1063	1.102(2)	0.077(2)	0.00122	1
72	СН	14	27	2	1.0926	1 094	0.076	1 1063	1.102(2)	0.077(2)	0.0012	1
72	СИ	13	25	3	1.0021	1.004	0.076	1.10691	1.102(2)	0.077(2)	0.0012	1
73		11	20	2	1.0751	1.004	0.070	1.10031	1.103(2)	0.077(2)	0.00113	1
74	СН	11	20	3	1.0979	1.099	0.077	1.111/	1.107(2)	0.078(2)	0.00101	1
/5	СН	12	22	3	1.0988	1.1	0.0//	1.1126	1.109(2)	0.078(2)	0.0014	1
76	0 C	1	11	3	1.4069	1.409	0.048	1.40978	1.410(3)	0.049(2)	0.00224	1
77	N C	2	10	3	1.4615	1.459	0.049	1.48107	1.476(3)	0.050(2)	-0.003	1
78	CC	9	10	3	1.5295	1.529	0.051	1.52221	1.519(3)	0.052(2)	-1E-3	1
79	Si O	1	8	3	1.6799	1.682	0.047	1.66791	1.668(3)	0.048(2)	0.00167	1
80	НН	28	29	3	1.7599	1.772	0.124	1.77977	1.783(4)	0.125(2)	0.01174	1
81	НН	20	21	3	1.7675	1.775	0.122	1.87566	1.875(4)	0.123(2)	0.00745	1
82	НН	22	23	3	1.771	1.779	0.123	1.6546	1.653(3)	0.124(2)	0.00789	1
83	Si C	1	15	1	1.8585	1.858	0.052	1.8505	1.848(4)	0.053(2)	-7.7E-4	1
84	ОН	7	21	3	2.0352	2 041	0.002	2 04198	2.044(4)	0.093(2)	0.00622	2
07	0 11	6	16	3	2.0504	2.041	0.1	2.04170	2.077(7)	0.007(3)	0.00602	2
85	ИИ	0	10	3	2.0394	2.005	0.1	2.12365	2.120(4)	0.090(3)	0.00003	2
80	NH	2	19	3	2.0747	2.078	0.102	2.1041	2.165(4)	0.099(3)	0.00352	2
8/	NH	2	18	3	2.1347	2.138	0.102	2.23833	2.237(4)	0.098(3)	0.00315	2
88	СН	9	19	3	2.1424	2.148	0.109	2.10446	2.105(4)	0.105(3)	0.00545	2
89	СН	10	16	3	2.1631	2.167	0.106	2.14085	2.140(4)	0.103(3)	0.00371	2
90	СН	14	25	2	2.1658	2.171	0.107	2.00545	2.005(4)	0.103(3)	0.00472	2
91	СН	10	17	1	2.1658	2.171	0.107	2.00545	2.005(4)	0.103(3)	0.00473	2
92	СН	11	22	3	2.1907	2.195	0.108	2.18571	2.185(4)	0.104(3)	0.00397	2
93	НН	16	23	3	2.2686	2.27	0.264	2.63249	2.608(5)	0.260(3)	0.00178	2
94	NC	2	11	2	2,3938	2,395	0.064	2.44219	2,442(5)	0.060(3)	0.00107	2
95	NC	2	13	1	2 3937	2 395	0.064	2 4421	2.442(5)	0.060(3)	0.00111	2
96		2 Q	14	3	2.3937	2.375	0.004	2.33504	2.442(5)	0.063(3)	0.00604	2
90	CIN	0	14	1	2.3009	2.390	0.000	2.39394	2.401(3)	0.003(3)	0.00094	2
97	SI N	1	2	1	2.3935	2.419	0.15	2.48124	2.498(5)	0.146(3)	0.02512	2
98	нн	25	27	3	2.4222	2.433	0.1/3	2.07443	2.071(4)	0.169(3)	0.01035	2
99	нн	18	23	3	2.4433	2.441	0.224	2.65434	2.634(5)	0.220(3)	-0.0023	2
100	Si H	1	30	3	2.4571	2.465	0.124	2.46028	2.462(5)	0.120(3)	0.00809	2
101	CC	10	14	3	2.4728	2.47	0.069	2.51332	2.509(5)	0.066(3)	-0.00259	2
102	НН	16	18	3	2.4698	2.478	0.175	2.43635	2.432(5)	0.172(3)	0.00802	2
103	СН	10	23	3	2.4885	2.486	0.141	2.60951	2.600(5)	0.137(3)	-0.00233	2
104	НН	25	26	3	2.5959	2.602	0.162	2.43368	2.429(5)	0.159(3)	0.0059	2
105	ΝΟ	2	8	3	2.6385	2.649	0.089	2.66202	2.670(5)	0.085(3)	0.01095	2
106	СН	12	18	3	2 6619	2.662	0.153	2.83983	2.832(6)	0.149(3)	3 1E-4	2
107	ОН	8	27	3	2.601	2.002	0.162	2.65963	2.032(0)	0.159(3)	0.01578	2
107	SIC	1	11	3	2.075	2.711	0.102	2.70735	2.770(0)	0.157(3)	0.01370	2
100		0	11	3	2.7004	2.72	0.007	2.75005	2.750(5)	0.003(3)	0.0134	2
109		8	15	3	2.7403	2.748	0.1	2.75205	2.757(5)	0.096(3)	0.00785	2
110	NH	2	16	3	2.7477	2.755	0.152	2.8/568	2.8/5(6)	0.148(3)	0.00692	2
111	СН	9	23	3	2.778	2.785	0.194	3.04657	3.042(6)	0.189(5)	0.00692	3
112	00	7	8	2	2.8438	2.851	0.095	2.81695	2.822(6)	0.091(3)	0.00764	2
113	00	6	8	1	2.8435	2.851	0.095	2.80516	2.810(6)	0.091(3)	0.00796	2
114	ОН	8	30	3	2.8865	2.899	0.237	2.92412	2.918(6)	0.233(3)	0.01225	2
115	СН	12	16	3	2.9212	2.932	0.205	3.13943	3.138(6)	0.200(5)	0.01109	3
116	НН	18	22	3	2.9741	2.982	0.227	3.24872	3.241(6)	0.223(5)	0.00761	3
117	ОН	6	29	3	3.0042	3.023	0.239	3.03748	3.038(6)	0.235(3)	0.01924	2
118	нн	16	10	3	3.0418	3.057	0.125	2 97445	2.984(6)	0.121(3)	0.01487	2
110	C; LI	10	24	2	2.0500	2 072	0.123	2.10484	2.004(0)	0.121(3)	0.01407	2
119	SIT	1	10	2	2.055	2.075	0.178	2 11202	3.200(0)	0.173(3)	0.02064	2
120		10	10	3	2.033	2.079	0.103	3.11283	3.129(0)	0.099(3)	0.01900	2
121	СН	10	22	2	3.0/1	3.078	0.14	3.19933	3.200(6)	0.135(5)	0.00687	5
122	СН	12	26	1	3.0/14	3.078	0.14	3.20832	3.209(6)	0.135(5)	0.00645	3
123	СС	11	14	3	3.1089	3.116	0.105	3.23112	3.235(6)	0.100(5)	0.00678	3
124	ОН	8	20	3	3.1497	3.18	0.323	3.32916	3.329(7)	0.319(5)	0.03064	3
125	ΝΗ	2	21	3	3.3399	3.35	0.099	3.24543	3.253(6)	0.094(5)	0.0101	3
126	ОН	7	22	3	3.3435	3.359	0.1	3.35539	3.369(7)	0.095(5)	0.01584	3
127	СН	10	27	3	3.3574	3.364	0.103	3.43859	3.442(7)	0.098(5)	0.00622	3
128	0 C	8	11	3	3.3539	3.37	0.176	3.37678	3.385(7)	0.171(5)	0.01647	3
129	SiH	1	19	3	3,4153	3.447	0.192	3,59341	3.615(7)	0.188(5)	0.03128	3
130	0 H	6	23	2	3 4482	3 479	0.231	3 66038	3 678(7)	0.226(5)	0.03119	3

Table S2. Starting (QC) and refined (GED) values for internuclear distances (r_a , r_{h1}) and vibrational amplitudes (l) of 1-methylsilatrane based on the MP2/6-311G** calculations

131	ОН	7	27	1	3.4488	3.479	0.231	3.67403	3.691(7)	0.226(5)	0.0306	3
132	0 C	8	10	3	3.4976	3.516	0.113	3.5422	3.557(7)	0.108(5)	0.01858	3
133	НН	19	23	3	3.536	3.547	0.155	3.66165	3.667(7)	0.150(5)	0.01118	3
134	СН	9	24	3	3.5915	3.61	0.256	3.75767	3.759(7)	0.251(5)	0.01823	3
135	Si H	1	21	3	3.5947	3.62	0.1	3.57845	3.601(7)	0.096(5)	0.02523	3
136	CC	10	11	1	3.6192	3.624	0.076	3.63329	3.636(7)	0.071(5)	0.00432	3
137	CC	9	14	2	3.6196	3.623	0.076	3.63369	3.636(7)	0.071(5)	0.0039	3
138	0 C	8	12	3	3.6118	3.625	0.107	3.59873	3.609(7)	0.103(5)	0.01309	3
139	ОН	8	29	3	3.6756	3.713	0.117	3.69023	3.724(7)	0.112(5)	0.03695	3
140	НН	17	23	3	3.7083	3.719	0.213	3.9916	3.991(8)	0.216(11)	0.01068	4
141	0 C	6	11	3	3.7428	3.76	0.086	3.73607	3.751(7)	0.081(5)	0.01709	3
142	НН	16	22	3	3.8267	3.854	0.234	4.03538	4.050(8)	0.229(5)	0.0274	3
143	НН	18	27	3	3.8432	3.854	0.166	4.01793	4.022(8)	0.169(11)	0.0113	4
144	CC	11	13	3	3.8555	3.868	0.123	3.91396	3.922(8)	0.118(5)	0.012	3
145	СН	9	22	3	3.9963	4.017	0.153	4.14686	4.162(8)	0.156(11)	0.0206	4
146	НН	20	25	3	4.0418	4.067	0.298	3.97804	3.981(8)	0.293(5)	0.02488	3
147	СН	11	18	3	4.0583	4.068	0.148	4.18438	4.189(8)	0.151(11)	0.00986	4
148	S1 H	1	22	3	4.0377	4.068	0.127	4.1387	4.165(8)	0.130(11)	0.03071	4
149		13	15	3	4.0554	4.076	0.1	4.07833	4.097(8)	0.103(11)	0.0211	4
150	СН	14	21	3	4.1208	4.136	0.131	4.19237	4.203(8)	0.134(11)	0.01507	4
151	СН	14	10	3	4.1553	4.16/	0.147	4.26582	4.273(9)	0.150(11)	0.01218	4
152	СИ	11	30	2	4.1979	4.219	0.242	4.23754	4.244(8)	0.245(11)	0.02102	4
155		7 71	29	3	4.1988	4.219	0.242	4.23203	4.230(8)	0.243(11) 0.207(11)	0.02012	4
154	пп	24	20	3	4.2551	4.244	0.304	4.30288	4.330(9)	0.307(11)	0.00849	4
155	СЧ	13	30	1	4.2304	4.270	0.132	4.32303	4.340(9)	0.133(11) 0.245(11)	0.02391	4
150	ОН	8	22	3	4.2747	4.305	0.242	4.30031	4.323(9)	0.243(11) 0.168(11)	0.02372	4
158	Сн	15	24	3	4 3104	4.320	0.103	4.37077	4.394(9)	0.100(11)	0.02539	4
159	ОН	8	23	3	4 3294	4 355	0.177	4 41407	4.435(9)	0.200(11) 0.143(11)	0.02541	4
160	O H	6	20	3	4 3483	4 375	0.14	4 44119	4 461(9)	0.143(11) 0.171(11)	0.02636	4
161	0 H	8	21	3	4.3895	4.42	0.196	4.42872	4.450(9)	0.199(11)	0.03001	4
162	СН	11	19	3	4.416	4.431	0.113	4.52489	4.537(9)	0.116(11)	0.01463	4
163	СН	10	21	3	4.4287	4.442	0.126	4.22202	4.232(8)	0.129(11)	0.01362	4
164	ОН	6	22	3	4.5028	4.534	0.137	4.59047	4.617(9)	0.140(11)	0.03129	4
165	НН	16	24	3	4.5198	4.551	0.264	4.73679	4.753(9)	0.267(11)	0.03112	4
166	ОН	6	21	3	4.5283	4.562	0.147	4.37544	4.404(9)	0.150(11)	0.03346	4
167	СН	11	25	3	4.5383	4.563	0.178	4.3833	4.400(9)	0.181(11)	0.02451	4
168	СН	11	24	3	4.6069	4.63	0.166	4.74024	4.757(9)	0.169(11)	0.0229	4
169	НН	16	26	3	4.6471	4.666	0.178	4.84745	4.860(10)	0.181(11)	0.01915	4
170	НН	18	21	3	4.7035	4.719	0.201	4.57792	4.584(9)	0.204(11)	0.01518	4
171	СН	15	25	3	4.7079	4.743	0.145	4.74122	4.771(9)	0.148(11)	0.03486	4
172	НН	24	30	3	4.7104	4.757	0.278	4.82079	4.851(10)	0.281(11)	0.04656	4
173	НН	25	30	3	4.7272	4.765	0.3	4.7495	4.768(9)	0.303(11)	0.03741	4
174	ΝΗ	2	30	3	4.7368	4.773	0.204	4.81835	4.845(10)	0.207(11)	0.03571	4
175	НН	23	24	3	4.7744	4.794	0.195	5.01341	5.025(10)	0.198(11)	0.01926	4
176	CC	10	15	3	4.773	4.798	0.116	4.82085	4.843(10)	0.119(11)	0.02549	4
177	HH	21	30	3	4.7971	4.834	0.297	4.92032	4.939(10)	0.300(11)	0.03689	4
178	НН	17	22	3	4.9308	4.958	0.179	5.01971	5.040(10)	0.182(11)	0.02715	4
1/9	СН	13	21	3	4.9345	4.959	0.147	4.9/801	4.998(10)	0.150(11)	0.02486	4
180		15	29	3	4.9464	4.999	0.123	4.9/911	5.028(10)	0.120(11)	0.05242	4
181		15	19	3	5.0243	5.003	0.221	5.19/1	5.124(10)	0.224(11)	0.03822	4
102	сп ци	14 27	30	3 2	5 10440	5.070	0.22	5 20502	5.134(10) 5.308(11)	0.223(11) 0.311(11)	0.02980	4
184	нп	21	20	<u> </u>	5 1073	5.130	0.308	5 20701	5.308(11) 5.308(11)	0.311(11) 0.311(11)	0.03179	4
185	СН	12	29	3	5 1522	5.130	0.308	5 10512	5 210(10)	0.311(11) 0.204(11)	0.02000	+ 1
186	НН	24	29	3	5.1683	5.227	0.201	5.31116	5.358(11)	0.243(11)	0.05834	4
187	нн	19	2)	3	5 3229	5 349	0.138	5 2178	5.240(10)	0.243(11) 0.141(11)	0.02643	
188	СН	10	30	3	5.4829	5.531	0.16	5.54075	5.586(11)	0.128(80)	0.04843	5
189	НН	19	29	2	5.547	5.599	0.261	5.68518	5.728(11)	0.230(80)	0.05209	5
190	НН	27	28	1	5.5436	5.599	0.261	5.68168	5.728(11)	0.230(80)	0.0555	5
191	НН	21	25	3	5.5872	5.626	0.212	5.45576	5.488(11)	0.180(80)	0.03847	5
192	НН	21	24	3	5.6798	5.716	0.178	5.75462	5.787(12)	0.146(80)	0.03605	5
193	НН	25	29	3	5.6687	5.743	0.154	5.69105	5.763(11)	0.123(80)	0.07454	5
194	НН	19	30	3	5.7196	5.783	0.265	5.9177	5.972(12)	0.233(80)	0.06345	5
195	СН	15	22	2	5.767	5.805	0.133	5.83885	5.875(12)	0.101(80)	0.03803	5
196	СН	15	18	1	5.7669	5.805	0.133	5.83866	5.875(12)	0.101(80)	0.03819	5
197	НН	22	30	3	6.061	6.101	0.225	6.12382	6.158(12)	0.194(80)	0.03981	5

198	НН	26	30	3	6.0857	6.132	0.228	6.15459	6.194(12)	0.197(80)	0.04592	5
199	НН	18	30	3	6.4703	6.533	0.174	6.56658	6.626(13)	0.142(80)	0.06272	5

^[a] r_{h1} values ($r_{h1}=r_a+\Delta r$) are given for GED results. The vibrational corrections Δr were calculated by the Vibmodule program (Vishnevskiy et al, *J. Phys.: Conf. Ser.*, 2015, **633**, 012076) using the so called second approximation, in which harmonic approach with nonlinear relation between Cartesian and internal coordinates were applied on the base of the force field estimated in the quantum chemical calculations at MP2/6-311G** level.

^[b] Values in parentheses for the GED data are full errors estimated as $\sigma(r_{hl}) = [\sigma_{scale}^2 + (2.5\sigma_{LS})^2]^{\frac{1}{2}}$, where $\sigma_{scale} = 0.002r$ and σ_{LS} is a standard deviation in least-squares refinement for internuclear distances and as $3\sigma_{LS}$ for vibration amplitudes. The place-value is such that the last digit of the uncertainty lines up with the last digit of the nominal value.

^[c] All amplitudes were refined being united in 5 groups. The differences between the amplitudes within each group were constrained to the calculated values.

Atomic coordinates of the refined structure of 1-methylsilatrane (for the C_3 conformer) based on the MP2/6-311G** calculations

Atom #	Nucleus charge	Х	Y	Z
1.	14	0.	0.	0.
2.	7	0.	0.	2.4978
3.	0	2.	0.	0.
4.	0	-0.9918	1.7367	0.
5.	0	-0.9918	-1.7367	0.
6.	8	0.7745	-1.4282	0.3787
7.	8	0.8561	1.3808	0.3787
8.	8	-1.6243	0.0357	0.3787
9.	6	1.475	-1.7104	1.5698
10.	6	0.6423	-1.3006	2.7728
11.	6	0.7537	2.129	1.5698
12.	6	0.8108	1.2028	2.7728
13.	6	-2.2167	-0.4326	1.5698
14.	6	-1.4479	0.0872	2.7728
15.	6	0.	0.	-1.8483
16.	1	2.4632	-1.2178	1.6522
17.	1	1.4621	-2.8015	1.7268
18.	1	1.2016	-1.4377	3.72
19.	1	-0.08	-2.1183	2.9281
20.	1	-0.164	2.7429	1.6522
21.	1	1.7077	2.659	1.7268
22.	1	0.6526	1.7564	3.72
23.	1	1.8792	0.981	2.9281
24.	1	-2.279	-1.535	1.6522
25.	1	-3.1579	0.1197	1.7268
26.	1	-1.8444	-0.3304	3.72
27.	1	-1.7998	1.12	2.9281
28.	1	-0.4235	-0.9396	-2.2365
29.	1	1.0259	0.0983	-2.2365
30.	1	-0.6059	0.8337	-2.2365

			QC ^a	1		GE	ED ^b
Parameter	M06-2X ^a	B3LYP ^a	MP2 ^a	CAMB3LYP ^c	B3LYP-D3 ^c	MP2 ^d	B3LYP ^d
Internuclear	r distances				·		
Si N	2.695	2.689	2.419	2.712	2.775	2.498(13)	2.514(17)
Si – O	1.661	1.671	1.682	1.655	1.661	1.668(4)	1.667(4)
0 – C	1.409	1.416	1.409	1.406	1.415	1.410(4)	1.420(7)
C – C	1.530	1.536	1.529	1.525	1.532	1.519(5)	1.527(7)
N – C	1.448	1.454	1.458	1.442	1.446	$1.476(5^{e})^{f}$	$1.459(9^{e})^{f}$
Si-C	1.847	1.858	1.858	1.849	1.856	1.848(7)	1.847(8)
Bond angle	S			-	·		
Si N – C	C 97.0	97.2	102.1	96.2	95.0	100.7 ^f	102.9 ^f
N-C-C	2 109.0	109.8	106.6	110.1	110.6	109.2 ^f	105.3 ^f
C-C-O	110.1	110.9	109.2	110.9	111.2	110.0(6)	114.2(7)
C - O - S	i 124.1	125.5	123.0	125.5	124.8	126.4(5)	125.0(6)
0 – Si N	N 73.7	74.5	78.2	73.9	73.5	76.9(2)	76.9(6)
O-Si-C	C 106.3	105.5	101.8	106.1	106.5	103.1(2)	103.1(6)
O-Si-C	97.0	97.2	102.1	96.2	95.0	115.5 ^f	115.0 ^f
Torsion ang	gles						
C-O-Si N	-33.3	-29.1	-24.3	-30.5	-31.9	-25.1(16)	-19.6(19)
C-C-O-Si	61.8	55.9	49.9	58.0	60.4	47.7(18)	44.2(27)
O-Si N-C	C 1.2	-1.3	-5.5	-0.6	0.5	-2.2 ^f	-6.4 ^f
H-C-Si-O	51.8	51.9	52.8	51.5	50.8	62(36)	34(26)
Flap ^g	47.1	43.5	40.2	45.0	47.1	37.0 ^f	41.5 ^f
R-factor						4.2%	4.0%

Table S3. Theoretical (QC) and experimental (GED) geometric parameters of 1-methylsilatrane (Å and degrees).

^[a] QC calculations with 6-311G(d,p) basis set.

^[b] r_{h1} values $(r_{h1}=r_a+\Delta r)$ are given for GED results. The vibrational corrections Δr were calculated by the Vibmodule program (Vishnevskiy et al, *J. Phys.: Conf. Ser.*, 2015, **633**, 012076) using the so called second approximation, in which harmonic approach with nonlinear relation between Cartesian and internal coordinates were applied on the base of the force field estimated in the specified QC calculations. Values in parentheses are full errors estimated as $\sigma(r_{h1})=[\sigma_{scale}^2+(2.5\sigma_{LS})^2]^{\frac{1}{2}}$, where $\sigma_{scale}=0.002r$ and σ_{LS} is a standard deviation in least-squares refinement for internuclear distances and as $3\sigma_{LS}$ for angles. The place-value is such that the last digit of the uncertainty lines up with the last digit of the nominal value.

^[c] QC calculations with cc-pVTZ basis set

^[d] Starting model for GED was taken from the corresponding method.

^[e] Estimated uncertainty

^[f] Dependent parameter.

^[g] Flap angle of the OCC fragment relative to the NSi^{...}O plane.

	X = Me		$\mathbf{X} = \mathbf{H}$		$\mathbf{X} = \mathbf{F}$		
Method	d _{SiN} , Å	ref.	d _{SiN} , Å	ref.	d _{SiN} , Å	ref.	MAE, Å
GED	2.514(17)	_	2.406(27)	[1a]	2.324(14)	[1b]	
B3LYP/6-311G(d,p)	2.689	_	2.549	-	2.433	-	0.14
B3LYP/6-311+G(d,p)	2.711	-	2.563	[2]	2.427	[2]	0.15
B3LYP/6-311++G(d,p)	2.703	[1a]	2.542	[1a]	2.403	[1a]	0.14
B3LYP/def2-TZVPP	2.738	-	2.570	-	2.449	-	0.17
B3LYP/cc-pVTZ	2.719	-	2.567	-	2.424	-	0.16
B3LYP/aug-cc-pVTZ	2.719	-	2.545	-	2.405	-	0.14
B3LYP-D3/6-311G(d,p)	2.728	_	2.591	-	2.468	_	0.18
B3LYP-D3/cc-pVTZ	2.775	_	2.618	-	2.464	_	0.20
B3LYP-D3/aug-cc-pVTZ	2.770	-	2.606	-	2.446	-	0.19
B3LYP-D3(BJ)/6-311G(d,p)	2.657	-	2.521	-	2.405	-	0.11
B3LYP-D3(BJ)/cc-pVTZ	2.696	_	2.536	-	2.394	_	0.13
B3LYP-D3(BJ)/aug-cc-pVTZ	2.688	-	2.526	-	2.380	-	0.12
CAM-B3LYP/6-311G(d,p)	2.677	-	2.549	-	2.409	-	0.13
CAM-B3LYP/cc-pVTZ	2.712	_	2.556	-	2.389	_	0.14
M06-2X/6-311G(d,p)	2.700	[3]	2.535	[3]	2.352	[3]	0.11
M06-2X/ aug-cc-pVTZ	2.755	-	2.562	-	2.340	-	0.14
B3PW91/6-311G(d,p)	2.533	[3]	2.400	[3]	2.321	[3]	0.01
B3PW91/6-311++G(d,p)	2.558	[3]	2.405	[3]	2.304	[3]	0.02
B3PW91/ aug-cc-pVTZ	2.558	_	2.377	-	2.294	_	0.03
B3PW91-D3/6-311G(d,p)	2.585	_	2.437	-	2.347	_	0.04
B3PW91-D3/aug-cc-pVTZ	2.613	-	2.421	-	2.320	-	0.04
B3PW91-D3(BJ)/6-311G(d,p)	2.508	-	2.378	-	2.302	-	0.02
B3PW91-D3(BJ)/aug-cc-pVTZ	2.519	_	2.353	-	2.274	_	0.04
PBE/TZ2P	2.400	[4]	2.301	[4]	2.244	[4]	0.10
PBE0/6-311G(d,p)	2.502	[3]	2.371	[3]	2.293	[3]	0.03
PBE0/6-311++G(d,p)	2.520	[3]	2.376	[3]	2.277	[3]	0.03
PBE0/ aug-cc-pVTZ	2.508	-	2.343	-	2.264	-	0.04
PBE0-D3(BJ)/ aug-cc-pVTZ	2.493	-	2.333	-	2.256	-	0.05
ωB97X/6-311G(d,p)	2.663	[3]	2.511	[3]	2.376	[5]	0.10
ωB97X-D/6-311G(d,p)	2.597	[3]	2.493	[3]	2.372	[5]	0.07
PW6B95/6-311G(d,p)	2.549	-	2.414	-	2.313	-	0.02
PW6B95-D3(BJ)/6-311G(d,p)	2.544	-	2.412	-	2.311	-	0.02

Table S4. GED and DFT values of d_{SiN} and MAE for silatranes XSi(OCH₂CH₂)₃N, **1**.

References

- a) I. F. Shishkov, L. V. Khristenko, F. M. Rudakov, A. V. Golubinskii, L. V. Vilkov, S. S. Karlov, G. S. Zaitseva, S. Samdal, *Struct. Chem.* 2004, 15, 11-16; b) G. Forgacs, M. Kolonits, I. Hargittai, *Struct. Chem.* 1990, 1, 245-250.
- [2] A. A. Milov, R. M. Minayev, V. I. Minkin, Russ. J. Org. Chem., 2003, 39, 340-347.
- [3] E. F. Belogolova, V. F. Sidorkin, J. Phys. Chem. A 2013, 117, 5365-5376.
- [4] S. S.Karlov, D. A. Tyurin, M. V. Zabalov, A. V. Churakov, G. S. Zaitseva, J. Mol. Struct.: THEOCHEM 2005, 724, 31-37.
- [5] V. F. Sidorkin, E. F. Belogolova, E. P. Doronina, *Phys. Chem. Chem. Phys.* 2015, 17, 26225-26237

Ма		Def				1	
IVIO	lecule	Kel.	$r_a(SI \cdots N)$	$r_g(S1N)$	$\mathbf{r}_{h1}(\mathbf{S}_{1}\cdots\mathbf{N})$	1	Δr
							(vibration
							correction)
1a	MeSi(OCH ₂ CH ₂) ₃ N	[1a]	$2.448(47)^{a}$	2.453(47)	NA	0.115	NA
		this work	2.491(17)	2.504(17)	2.514(17)	0.179(2)	0.022
1b	HSi(OCH ₂ CH ₂) ₃ N	[1c]	2.396(27)	2.406(27)	NA	0.158(57)	NA
1c	FSi(OCH ₂ CH ₂) ₃ N	[1b]	2.318(9)	2.324(14)	NA	0.110(3)	NA
2f	anti-	[2a]	2.160(7)	2.164 ^a	NA	0.101(15)	NA
	ClH ₂ SiONMe ₂			$(17)^{b}$			
2e	gauche-	[2a]	2.468(25)	2.471 ^a	NA	0.092(14)	NA
	ClH ₂ SiONMe ₂			$(29)^{b}$			
2c	F ₃ SiN(Me)NMe ₂	[2b]	2.510(6)	$2.512^{a}(6)^{c}$	NA	0.064	NA
2d	F ₃ SiN(SiMe ₃)NMe ₂	[2b]	2.135(9)	2.140 ^a	NA	0.107(5)	NA
				$(11)^{b}$			
2b	F ₃ SiNCH ₂ NMe ₂	[2c]	$2.731(18)^{d}$				
2h	anti-	[2d]	2.127 ^e	2.134 ^a	2.112	0.121(9)	-0.015
	(F ₃ C)F ₂ SiONMe ₂						
2j	gauche-	[2d]	2.189 ^e	2.196 ^a	2.174		
	(F ₃ C)F ₂ SiONMe ₂						
2a	H ₃ SiN(CH ₂) ₃ NMe ₂	[2e]	$2.899^{\rm e}(35)^{\rm f}$	$2.913^{a}(36)^{b}$	2.912(35)	0.205(6)	0.013

Table S5. Different types the GED internuclear Si…N distances (d_{SiN} , Å) in 1 and 2.

Values and uncertainties calculated (estimated) in this work: ^a – calculated from equation: $r_g = r_a + \frac{l^2}{r_a}$

^b – uncertainty estimated as a square root of a sum of squares of r_a and l uncertainties ^c – uncertainty taken equal to that for r_a

^d – Value and uncertainty estimated on the base of those for r(Si-C), r(N-C) and ∠Si-C-N specified in [2c]

^e – calculated from equation: $r_a = r_{h1} - \Delta r$

^f – uncertainty taken equal to that for r_{h1}

References

- a) Q. Shen, R. L. Hilderbrandt, J. Mol. Struct. 1980, 64, 257-262; b) G. Forgacs, M. Kolonits, I. Hargittai, [1] Struct. Chem. 1990, 1, 245-250; c) I. F. Shishkov, L. V. Khristenko, F. M. Rudakov, A. V. Golubinskii, L. V. Vilkov, S. S. Karlov, G. S. Zaitseva, S. Samdal, Struct. Chem. 2004, 15, 11-16.
- a) N. W. Mitzel, U. Losehand, J. Am. Chem. Soc. 1998, 120, 7320-7327; b) K. Vojinović, L. J. McLachlan, [2] S. L. Hinchley, D. W. H. Rankin, N. W. Mitzel, Chem. Eur. J. 2004, 10, 3033-3042; c) N. W. Mitzel, K. Vojinović, T. Foerster, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, Chem. Eur. J. 2005, 11, 5114-5125; d) N. W. Mitzel, K. Vojinović, R. Fröhlich, T. Foerster, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, J. Am. Chem. Soc. 2005, 127, 13705-13713; e) M. Hagemann, R. J. F. Berger, S. A. Hayes, H.-G. Stammler, N. W. Mitzel, Chem. Eur. J. 2008, 14, 11027-11038.

GED/MS

The diffraction patterns of 1-methylsilatrane were obtained in a synchronous gas-phase electron diffraction and mass-spectrometric experiment carried out using the *EMR-100/APDM-1* unit^{1,2}. The samples were loaded in to molybdenum effusion cell filled by crushed pieces of Schott filter with a cylindrical nozzle of $0.6 \times 1.2 \text{ mm}^2$ size (diameter × length) and were kept at 355(5) K in the course of the experiments. Diffraction patterns were recorded on MACO EM/EMS photographic films of $9 \times 12 \text{ cm}^2$.

Accurate wavelengths of the electrons were calibrated using polycrystalline ZnO. The two camera distances resulted in diffraction patterns in the s-range for **1** of 1.3 to 16.4 Å⁻¹ and 3.0 to 28.9 Å⁻¹ with a step size of 0.1 Å⁻¹, where $s=(4\pi/\lambda)\sin(\theta/2)$, λ is electron wavelength and θ is scattering angle, respectively. The optical densities of the diffraction patterns were measured by a computer controlled MD-100 (Carl Zeiss, Jena) microdensitometer³ with a step size of 0.1 mm. The molecular scattering function, sM(s), was evaluated as sM(s)=(I(s)/G(s)-1)s, where I(s) is the total electron scattering intensity, G(s) the experimental background.

	Camera	distance
	Long	Short
Nozzle-to-plate distance, mm	598	338
Number of recorded films	6	5
Primary electron beam current, μA	0.43	1.30
Accelerating voltage ^a , kV	81.81	82.54
Temperature of effusion cell, K	360	350
Wavelength of electrons ^b , Å	0.041280	0.041082
Exposure time, s	50	65
Residual gas pressure, Torr, in		
-diffraction chamber	$3.3 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
-mass spectrometric block	$8.0 \cdot 10^{-7}$	$7.4 \cdot 10^{-7}$
Ionization voltage, V	5	0

Table S6. Conditions of the synchronous GED/MS experiments

^a Approximate value

^b Accurate wavelengths of electrons were calibrated using diffractions pattern of polycrystalline ZnO

Table S7. Mass-spectra of 1-methylsilatrane

M De	Relative intensity, %							
M, Da	Our data ^a	NIST ⁴						
45	28	10						
61	21	8						
77	19	9						
91	13	5						
100	23	12						
116	38	26						
130	15	9						
146	100	100						
158	17	22						
174	56	81						
189	22	26						
a T T	50							

^a - $U_{ioniz} = 50$.

References

- 1. Girichev G V., Utkin AN, Revichev YF. UPGRADING THE EMR-100 ELECTRON-DIFFRACTION CAMERA FOR USE WITH GASES. *Instruments Exp Tech New York*. 1984;27(2):457–461.
- 2. Giricheva NI, Girichev G V., Shlykov SA, Titov VA, Chusova TP. The joint gas electron diffraction and mass spectrometric study of GeI4(g) + Ge(s) system. Molecular structure of germanium diiodide. *J Mol Struct*. 1995;344(1–2):127–134. doi:10.1016/0022-2860(94)08408-A.
- 3. Girichev EG, Zakharov A V., Girichev G V., Bazanov MI. Automation of a physicochemical experiment: photometry and voltammetry. *Izv Vyss Uchebn Zaved*, *Tekhnol Tekst Prom.* 2000;(2):142–146.
- 4. https://webbook.nist.gov/cgi/cbook.cgi?ID=C2288133&Units=SI&Mask=200#Mass-Spec.

Table S8. Observed and Calculated (B3LYP and MP2 methods with 6-311G(d,p) basis set) Frequencies (cm⁻¹) of 1-methylsilatrane molecule. A bold italics in red show data for a benzene solution.

No.	Sym.	Observed ^{<i>a</i>}	Calcu	ulated	Assignment
		cryst/melt	B3LYP	MP2	-
		solution	gas phase	gas phase	
			solution	solution	
			(C-PCM)	(<i>C-PCM</i>)	
1	А	84	90	83	$v(Si \leftarrow N) + \rho(NC3) - twist^b + ring-tors$
			71	86	
2	А	-	150	171	ρ(CH3)-twist
			160	177	
3,4	Е	130	152	155	$\delta(SiO3)$ -as-bend + ring-tors
,			151	158	
5	А	182	191	219	$v(Si \leftarrow N) + \delta(SiO3)$ -s-def- $\delta(NC3)$ -s-
			<i>193</i>	238	def + ring-tors
6,7	Е	242	198	209	$\delta(SiO3)$ -as-def + ring-def + ring-tors
		170	202	215	
8,9	Е	264 /222	265	280	$\delta(SiO3)$ -as-def + ring-def
			271	280	
10	Α	288 /280	289	311	$v(Si \leftarrow N) + ring-tors$
		281	287	312	
11,12	Е	354 /355	358	365	$\delta(SiO3)$ -as-def + ring-tors
		355	354	361	
13,14	Е	455/440	416	437	$\delta(CNC)$ + ring-tors' + ring-def
			424	448	
15	А	471 /470	439	465	$\delta(SiO3)$ -s-def+ $\delta(CNC)$ + $\delta(OCC)$
		465	<i>453</i>	471	
16	А	-	552	575	ring-def'
			566	578	
17,18	Е	580 /580	576	596	ring-def
		576	<i>590</i>	609	
19	А	619 /606	598	608	v(SiC)-stretch +v(SiO)-stretch
			<i>590</i>	612	
20,21	E	718 /708	735	747	ρ (SiMe)-rock +v(SiO)-stretch
		712	730	742	
22	А	696	740	753	v(SiC)-stretch+ $v(NC)$ -stretch +
			731	738	v(SiO)
23	А	769 /769	777	791	v(SiC)-stretch- $v(NC)$ -stretch +
		763	768	788	v(SiO)
24,25	E	818	855	862	ρ(SiMe)-rock -v(SiO)-stretch
			846	<i>849</i>	
26	А	881	886	925	δ (NC3)-s-def+v(CC)-stretch
			895	935	+ρ(CH2)-rock
27,28	E	-	888	905	v(SiO)-stretch + $v(CC)$ -stretch +
			<u>887</u>	<i>907</i>	ρ(CH2)-rock
29,30	E	908/906	926	959	$v(CC)$ -stretch + $v(CN)$ + $\rho(CH2)$ -rock
		<i>902</i>	<i>931</i>	<i>964</i>	
31	Α	944 /944	998	1039	v(CC)-stretch + $v(CN)$ -stretch + ring-
		<i>934</i>	1005	1049	def

			C		
32,33	E	1016 /1008	1083	1101	ν (CN)-stretch + ρ (CH2)-rock
			1075	<i>1095</i>	
34	А	1050 /1055	1094	1114	v(CH2)-rock
		1055	<i>1094</i>	1117	
35,36	E	1084 /1085	1125	1162	v(CO)-stretch + $v(CN)$ -stretch
		1082	1114	1151	
37	А	1113 /1125	1152	1186	v(CO)-stretch
			1 137	1172	
38,39	Е	1171 ///75	1207	1223	ρ (CH2)-rock + ν (NC)-stretch
			<i>1201</i>	1217	
40	А	-	1262	1279	ρ(CH2)-twist
			1 261	1279	
41,42	Е	-	1280	1291	o(CH2)-twist
7			1277	1288	
43	А	1237	1289	1304	o(CH2)-twist
			1289	1307	p()
44	А	-/1265	1311	1321	o(SiMe3)-s-def-v(SiC)-stretch
		, 1200	1305	1312	
45 46	E	1278/1280	1329	1333	o(CH2)-twist + $o(CH2)$ -wag
15,10		1280	1317	1324	p(eff2) to ist + $p(eff2)$ wag
47.48	F	1350	1390	1399	o(CH2)-wag
-7,-0	L	1550	1390	1307	p(CI12) wag
/19	Δ	1358/1358	1392	1402	o(CH2)-wag
47	Λ	1350/1550	1302	1402	p(CII2)-wag
50	Δ	1500	1/05	1402	o(CH2)-wag
50	Α	-	1403	1420	p(CII2)-wag
51 52	F	1301	1412	1/31	o(CH2) wag
51,52	Ľ	1301	1412	1431	p(CII2)-wag
53 54	F	1407	1411	1476	o(SiMe3) as def
55,54	L	1407	1405	1470	p(Shvies)-as-der
55 56	Б	1402	1401	14/1	$\delta(CH2)$ action
55,50	Ľ	1450	1400	1505	0(C112)-SCISS
57	٨	1430	1490	1500	$\delta(CH2)$ soins
57	Α	-	1495	1509	0(C112)-SCISS
58 50	Б		1474	1529	S(CH2) against
36,39	E	-	1510	1530	0(CH2)-SCISS
60	٨	1/07/1/05	1517	1540	S(CH2) aging
00	A	1407/1403	1517 1510	1540	0(0112)-50155
61.62	F	1400	2062	2045	y(CH2) s strotch
01,02	E	-	2905	3043 2050	v(CH2)-s-sueich
62	Δ		2900	2045	u(CU2) a stratab
05	A	-	2908	3043 2059	V(CH2)-S-Stretch
(1 (5	Б	2075	2989	3058	
04,00	E	28/5	3000	3054	v(UH2)-s-stretch
	•	2015	3003	300/	$(\mathbf{C}^{\prime}\mathbf{M}_{2})$ = start 1
66	A	2915	3038	3085	v(S1Me3)-s-stretcn
C7			<u> </u>	3072	
6/	A		3003	3058	v(CH2)-s-stretch
60.60		0005	3007	3079	
68,69	E	2927	3059	3129	v(CH2)-as-stretch
			3066	3134	
70	A	-	3060	3130	v(CH2)-as-stretch

			3067	3135	
71	А	-	3075	3143	v(CH2)-as-stretch
			<i>3084</i>	3153	
72,73	E	2959	3080	3149	vCH2)-as-stretch
			<i>3088</i>	3159	
74,75	E	2975	3112	3183	v(SiMe3)-deg-stretch
			3106	3175	

^{*a*}Raman spectroscopy data for polycrystalline powders (cryst), a liquid state at 155° C (melt) and a solution in C₆H₆ [M. Imbenotte, G. Palavit, P. Legrand, *J. Raman. Spectr.* **1983**, *14*, 135-137]. ^{*b*}RelativetoMeSiO₃.

Table S9. Z- matrix for the KCED program input.

N	N1	P1	J1	K1	N2	P2	J2	K2	N3	P3	J3	K3	Code
C ₃ -co	onform	ner											
1													
2	1	2.6893	1	0									
3	1	2	2	0	2	90	3	0					
4	1	2	2	0	2	90	3	0	3	120	31	0	1
5	1	2	2	0	2	90	3	0	3	120	31	0	-1
6	1	1.6711	4	0	2	74.53	5	0	3	45	6	0	0
7	1	1.6711	4	0	2	74.53	5	0	4	45	6	0	0
8	1	1.6711	4	0	2	74.53	5	0	5	45	6	0	0
9	6	1.4155	8	0	1	125.49	9	0	2	-29.12	10	0	0
10	9	1.5359	11	0	6	110.90	12	0	1	55.85	13	0	0
11	7	1.4155	8	0	1	125.49	9	0	2	-29.12	10	0	0
12	11	1.5359	11	0	7	110.90	12	0	1	55.85	13	0	0
13	8	1.4155	8	0	1	125.49	9	0	2	-29.12	10	0	0
14	13	1.5359	11	0	8	110.90	12	0	1	55.85	13	0	0
15	1	1.8577	14	0	3	90	3	0	4	90	3	0	-1
16	9	1.0977	15	0	6	109.86	16	0	10	110.03	17	0	1
17	9	1.0938	15	-18	6	108.10	19	0	10	110.25	20	0	-1
18	10	1.1011	15	21	9	110.09	22	0	2	112.61	23	0	1
19	10	1.0928	15	-24	9	108.84	25	0	2	108.18	26	0	-1
20	11	1.0977	15	0	7	109.86	16	0	12	110.03	17	0	1
21	11	1.0938	15	-18	7	108.10	19	0	12	110.25	20	0	-1
22	12	1.1011	15	21	11	110.09	22	0	2	112.61	23	0	1
23	12	1.0928	15	-24	11	108.84	25	0	2	108.18	26	0	-1
24	13	1.0977	15	0	8	109.86	16	0	14	110.03	17	0	1

25	13	1.0938	15	-18	8	108.10	19	0	14	110.25	20	0	-1
26	14	1.1011	15	21	13	110.09	22	0	2	112.61	23	0	1
27	14	1.0928	15	-24	13	108.84	25	0	2	108.18	26	0	-1
28	15	1.0926	15	-27	1	110.70	28	0	6	51.93	29	0	0
29	15	1.0926	15	-27	1	110.70	28	0	7	51.93	29	0	0
30	15	1.0926	15	-27	1	110.70	28	0	8	51.93	29	0	0
C ₁ -co	onform	ner											
31	1	10	32	0	3	120	31	0	4	120	31	0	1
32	31	2	2	0	1	120	31	0	3	0	0	0	0
33	31	2	2	0	1	120	31	0	32	120	31	0	1
34	31	2	2	0	32	120	-31	0	33	0	0	0	0
35	31	2.6547	1	33	32	90	3	0	33	90	3	0	1
36	31	1.6714	4	34	35	75.36	5	35	32	45	6	0	1
37	31	1.6740	4	36	35	75.52	5	37	36	111.87	38	0	1
38	31	1.6716	4	39	35	75.01	5	40	36	116.15	38	41	-1
39	36	1.4134	8	42	31	124.68	9	-35	35	-28.98	10	0	0
40	39	1.5327	11	44	36	110.56	12	43	31	55.75	13	0	0
41	37	1.4140	8	45	31	126.93	9	46	35	-26.38	10	47	0
42	41	1.5430	11	48	37	111.60	12	49	31	48.86	13	50	0
43	38	1.4132	8	42	31	127.67	9	51	35	26.34	-10	-47	0
44	43	1.5423	11	52	38	111.57	12	49	31	-48.64	-13	-53	0
45	31	1.8585	14	54	32	90	3	0	33	90	3	0	-1
46	39	1.0983	15	55	36	109.97	16	56	40	110.28	17	57	1
47	39	1.0939	15	-18	36	108.27	19	-58	40	110.11	20	59	-1
48	40	1.1009	15	-44	39	110.20	22	60	35	112.59	23	0	1
49	40	1.0913	15	-61	39	108.57	25	0	35	108.05	26	45	-1
50	41	1.0942	15	44	37	108.04	16	-62	42	109.53	17	59	1
51	41	1.0965	15	-63	37	110.01	19	62	42	110.42	20	64	-1
52	42	1.0926	15	-27	41	108.65	22	65	35	107.99	23	66	1
53	42	1.1009	15	-44	41	109.63	25	49	35	111.79	26	67	-1
54	43	1.0942	15	44	38	108.07	16	-62	44	109.47	20	59	1
55	43	1.0968	15	-54	38	109.93	19	62	44	110.59	17	58	-1
56	44	1.1011	15	-44	43	109.60	25	49	35	112.10	26	68	1
57	44	1.0913	15	-61	43	108.57	22	65	35	107.95	23	66	-1
58	45	1.0925	15	-27	31	110.90	28	-57	32	45	6	0	0
59	45	1.0925	15	-27	31	110.90	28	-57	33	45	6	0	0
60	45	1.0925	15	-27	31	110.90	28	-57	34	45	6	0	0

N(i) – atom number; P(i) – parameter value; J(i) – parameter number; K(i) – number of the correction for the parameter specified in the column J(i) was taken as a difference between two analogous parameters adopted from QC calculations; Codes mean: valence angle (1 or -1) and torsion angle (0); atoms 3-5 in C₃.conformer and 32-34 in C₃.conformer are dummies

#	Parameter	Value	#	Parameter	Value
1	rSiN	2 4493	35	dA	0.82
2	rXSi	2.1195	36	dr	0.0029
3	AXSiX	90	37	dA	0.98
4	rOSi	1 6711	38	A	111 87
5	AOSiN	74 54	39	dr	0.0005
6	AOSiX	45.	40	dA	0.47
7	AOSiO ^b	113.16	41	dA	4.28
8	rCO	1.4155	42	dr	-0.0021
9	ACOSi	125.49	43	dA	-0.33
10	DCOSiN	-29.12	44	dr	-0.0032
11	rCC	1.5359	45	dr	-0.0015
12	ACCO	110.89	46	dA	1.44
13	DCCOSi	55.85	47	dD	2.8
14	rCSi	1.8577	48	dr	0.0071
15	rHC	1.0977	49	dA	0.71
16	AH1C1O	109.86	50	dD	-7.0
17	AH1C1C2	110.03	51	dA	2.18
18	dr	0.0039	52	dr	0.0061
19	AH2C1O	108.1	53	dD	-7.2
20	AH2C1C2	110.25	54	dr	0.0008
21	dr	0.0024	55	dr	0.0006
22	AH3C2C1	110.09	56	dA	-0.3
23	AH3C2N	112.61	57	dA	0.24
24	dr	0.0049	58	dA	0.35
25	AH4C2C1	108.84	59	dA	-0.5
26	AH4C2N	108.18	60	dA	1.98
27	dr	0.0051	61	dr	0.0064
28	A11	110.64	62	dA	1.82
29	D3	51.93	63	dr	0.0012
30	A12	108.22	64	dA	0.17
31	A13	120	65	dA	-1.44
32	rSiSi	10	66	dA	-4.6
33	dr	-0.0346	67	dA	3.61
34	dr	0.0003	68	dA	3.81

Table S10. List^a of independent starting parameters: distances r, valence A and dihedral D angles and differences, dr, dA and dD, between analogous parameters adopted from QC calculations B3LYP/6-311G**

^[a] Initial values were taken from QC calculations and are specified. All geometric parameters, except the differences, were variables. ^[b] parameter #7 was not used

Experimental total intensities and background for 1-methylsilatrane

I(s) long ca	amera s=	1.3 to 16.4	4 Å ⁻¹ ; ste	p 0.1 Å ⁻¹ ;	λ= 0.0412	28017 Å, s	sequence in rows
1.03799	0.83911	0.69900	0.64521	0.59580	0.56160	0.53780	0.52190
0.50588	0.48896	0.47150	0.45034	0.43054	0.41036	0.38690	0.36822
0.34863	0.33193	0.31760	0.30429	0.29364	0.28374	0.27602	0.27089
0.26817	0.26761	0.26931	0.27198	0.27541	0.27982	0.28410	0.28959
0.29511	0.30115	0.30789	0.31369	0.32062	0.32705	0.33223	0.33603
0.33786	0.33723	0.33406	0.32768	0.31909	0.30870	0.29716	0.28485
0.27285	0.26154	0.25123	0.24303	0.23672	0.23274	0.23030	0.22948
0.23019	0.23214	0.23458	0.23737	0.23994	0.24236	0.24366	0.24455
0.24467	0.24400	0.24237	0.24076	0.23880	0.23732	0.23583	0.23459
0.23460	0.23465	0.23497	0.23556	0.23638	0.23688	0.23702	0.23688
0.23556	0.23378	0.23174	0.22922	0.22725	0.22508	0.22281	0.22106
0.21930	0.21845	0.21741	0.21636	0.21548	0.21448	0.21335	0.21168
0.21057	0.20956	0.20872	0.20822	0.20786	0.20810	0.20879	0.20939
0.21088	0.21251	0.21409	0.21559	0.21683	0.21834	0.21927	0.21948
0.21901	0.21837	0.21744	0.21624	0.21505	0.21405	0.21258	0.21201
0.21137	0.21104	0.21110	0.21152	0.21204	0.21260	0.21354	0.21380
0.21411	0.21455	0.21409	0.21277	0.21162	0.21015	0.20869	0.20722
0.20595	0.20483	0.20443	0.20406	0.20467	0.20498	0.20589	0.20727
0.20856	0.20956	0.21070	0.21128	0.21218	0.21289	0.21287	0.21391
I(s) short of	camera s=	= 3.0 to 28	.9 Å ⁻¹ ; ste	ep 0.1 Å ⁻¹ :	$\lambda = 0.041$	08197 Å,	sequence in rows
1.99868	1.87638	1.75993	1.65219	1.55887	1.48102	1.41522	1.36147
1.31594	1.27998	1.25075	1.22451	1.20071	1.17739	1.15730	1.14069
1.12479	1.10883	1.09244	1.08219	1.07064	1.05524	1.03843	1.01898
0.99680	0.96883	0.93457	0.89654	0.85425	0.80847	0.76124	0.71623
0.67491	0.63884	0.60807	0.58287	0.56366	0.54978	0.54034	0.53488
0.53195	0.53025	0.52952	0.52886	0.52750	0.52455	0.52011	0.51471
0.50815	0.50022	0.49171	0.48319	0.47523	0.46827	0.46303	0.45804
0.45407	0.45192	0.45035	0.44823	0.44596	0.44291	0.43948	0.43498
0.42910	0.42233	0.41566	0.40884	0.40208	0.39564	0.39011	0.38536
0.38088	0.37652	0.37268	0.36894	0.36533	0.36135	0.35744	0.35365
0.35013	0.34706	0.34435	0.34195	0.34022	0.33977	0.33986	0.34043
0.34138	0.34232	0.34358	0.34400	0.34408	0.34390	0.34294	0.34129
0.33927	0.33672	0.33374	0.33079	0.32737	0.32438	0.32213	0.32045
0.31910	0.31793	0.31751	0.31727	0.31685	0.31624	0.31558	0.31472
0.31334	0.31123	0.30866	0.30567	0.30226	0.29881	0.29563	0.29293
0.29012	0.28802	0.28643	0.28542	0.28513	0.28522	0.28557	0.28625
0.28680	0.28712	0.28721	0.28727	0.28712	0.28686	0.28582	0.28458
0.28286	0.28104	0.27922	0.27772	0.27625	0.27456	0.27312	0.27202
0.27124	0.27035	0.26989	0.26978	0.26994	0.27024	0.27050	0.27143
0.27230	0.27290	0.27321	0.27371	0.27399	0.27390	0.27348	0.27272
0.27192	0.27091	0.27010	0.26911	0.26791	0.26684	0.26561	0.26450
0.26349	0.26261	0.26173	0.26110	0.26085	0.26057	0.26058	0.26058
0.26074	0.26120	0.26131	0.26137	0.26160	0.26158	0.26147	0.26127
0.26094	0.26047	0.26009	0.25981	0.25966	0.25976	0.25958	0.25910
0.25909	0.25922	0.25942	0.25967	0.26001	0.26045	0.26077	0.26126
0.26194	0.26235	0.26264	0.26308	0.26334	0.26316	0.26271	0.26252
0.26220	0.26179	0.26128	0.26074	0.25990	0.25908	0.25862	0.25810
0.25756	0.25737	0.25727	0.25716	0.25714	0.25721	0.25750	0.25787
0.25817	0.25864	0.25918	0.25947	0.25994	0.26023	0.26063	0.26111
0.26165	0.26199	0.26237	0.26309	0.26374	0.26429	0.26459	0.26492

0.265310.265770.266080.266420.266630.266940.266960.267110.267530.267780.267680.267660.267780.267870.267920.268200.268510.268460.268170.268160.268160.268160.26816

Background G(s) long camera, sequence in rows

-	acing our		ing canner	a, sequen		,		
	1.09898	0.96108	0.84537	0.76890	0.70255	0.64695	0.60436	0.57435
	0.54701	0.52468	0.50301	0.48177	0.46258	0.44416	0.42611	0.41060
	0.39530	0.38135	0.37102	0.36124	0.35235	0.34349	0.33528	0.32814
	0.32240	0.31838	0.31512	0.31248	0.30997	0.30753	0.30528	0.30326
	0.30129	0.29953	0.29769	0.29565	0.29356	0.29159	0.28953	0.28729
	0.28525	0.28325	0.28111	0.27920	0.27726	0.27558	0.27367	0.27177
	0.26987	0.26797	0.26631	0.26420	0.26228	0.26042	0.25866	0.25684
	0.25490	0.25307	0.25119	0.24960	0.24785	0.24614	0.24448	0.24262
	0.24105	0.23942	0.23758	0.23602	0.23479	0.23393	0.23323	0.23247
	0.23177	0.23113	0.23042	0.22976	0.22920	0.22863	0.22801	0.22740
	0.22677	0.22615	0.22549	0.22490	0.22433	0.22378	0.22326	0.22267
	0.22206	0.22146	0.22079	0.22015	0.21952	0.21891	0.21842	0.21783
	0.21742	0.21705	0.21672	0.21640	0.21607	0.21579	0.21546	0.21517
	0.21493	0.21468	0.21444	0.21418	0.21400	0.21381	0.21360	0.21336
	0.21313	0.21287	0.21262	0.21742	0.21218	0.21301	0.21300	0.21330
	0.21313	0.21207	0.21202	0.21212	0.21210	0.20974	0.20957	0.20946
	0.20936	0.21075	0.21037	0.21017	0.20990	0.20971	0.20957	0.20910
	0.20950	0.20933	0.20932	0.20993	0.2000	0.20213	0.20932	0.20000
	0.20703	0.2077	0.20004	0.20775	0.21000	0.21007	0.21017	0.21025
F	8.21034	nd G(s) sł	ort came	ra sequei	nce in roy	0.21075	0.21100	0.21120
-	2 24435	2 13137	2 02279	1 91628	1 82092	1 73903	1 66129	1 59158
	1 52316	1 46136	1 40614	1.91020	1.02052	1.75705	1.0012)	1.57150
	1.32310	1.10150	1.10011	1.00469	0.96939	0.93670	0.90715	0.88140
	0.85782	0.83546	0.81340	0 79293	0.77278	0.75214	0.73218	0.71184
	0.69158	0.67297	0.65547	0.63758	0.62266	0.60766	0.79210	0.58313
	0.57380	0.56388	0.55448	0.54459	0.53520	0.52572	0.57571	0.50813
	0.49935	0.49104	0.48309	0.47638	0.33320	0.32372	0.45840	0.45283
	0.44806	0.44420	0.44004	0.43618	0.43217	0.42831	0.42440	0.42054
	0.41663	0.41278	0.40892	0.40510	0.40128	0.39744	0.39365	0.38984
	0.38613	0.38232	0.37865	0.37527	0.37204	0.36888	0.36588	0.36310
	0.36051	0.35801	0.35582	0.35366	0.35159	0.34988	0.30300	0.34629
	0.34458	0.32290	0.335302	0.33963	0.33802	0.33636	0.33474	0.33309
	0.33151	0.32982	0.32830	0.32659	0.32510	0.32341	0.32193	0.32037
	0.31891	0.31737	0.31593	0.31442	0.31296	0.31150	0.31005	0.30862
	0.30718	0.30574	0.30433	0.30288	0.30149	0.30005	0.29868	0.29737
	0.29604	0.29483	0.29358	0.29245	0.29142	0.29042	0.29000	0.28860
	0.28775	0.28692	0.28607	0.28525	0.29112	0.28359	0.28276	0.28196
	0.28117	0.28042	0.27958	0.27887	0.27804	0.27734	0.27653	0.27582
	0.27513	0.27444	0.27383	0.27328	0.27274	0.27222	0.27167	0.27116
	0.27069	0.27021	0.26971	0.26930	0.26881	0.26841	0.26795	0.26753
	0.26710	0.26666	0.26571	0.26589	0.26552	0.26520	0.26488	0.26457
	0.26427	0.26398	0.26369	0.26346	0.26327	0.26308	0.26293	0.26279
	0.26267	0.26257	0.26248	0.26237	0.26327	0.26216	0.26204	0.26193
	0.26180	0.26169	0.26216	0.26145	0.26133	0.26122	0.26112	0.26100
	0.26087	0.26076	0.26063	0.26049	0.26038	0.26025	0.26014	0.26003
	0.25993	0.25984	0.25975	0.25967	0.25960	0.25953	0.25945	0.25939
	0.25932	0 25926	0.25919	0.25913	0.25906	0.25901	0.25896	0.25897
	0.25908	0 25923	0 25941	0.25915	0.25974	0.25990	0.26009	0.26027
	0.2000	0.20120	U.2JJTI	0.43731	0.20/14	0.20110	0.2000/	0.20021

0.26047	0.26065	0.26085	0.26104	0.26123	0.26143	0.26162	0.26183
0.26203	0.26223	0.26245	0.26265	0.26291	0.26315	0.26340	0.26367
0.26395	0.26425	0.26451	0.26480	0.26507	0.26536	0.26560	0.26587
0.26616	0.26645	0.26672	0.26701	0.26729	0.26759	0.26788	0.26822
0.26856	0.26891	0.26929	0.26969				

Cartesian coordinates (Å) for 1-methylsilatrane

CAM-B3LYP/cc-pVTZ

E(RCAM-B3LYP) = -845.795683497

#	Ζ	Х	У	Z
1	14	0.000123	0.000058	0.038621
2	7	0.000230	0.000441	2.750402
3	8	1.564350	-0.286294	0.496576
4	8	-0.533923	1.497963	0.496441
5	8	-1.030039	-1.211283	0.496830
6	6	2.171473	0.192782	1.670736
7	6	1.408020	-0.271543	2.906054
8	6	-1.252244	1.784320	1.670652
9	6	-0.468129	1.355632	2.905899
10	6	-0.918700	-1.976344	1.671158
11	6	-0.939214	-1.082730	2.906253
12	6	0.000099	-0.000217	-1.810358
13	1	2.212956	1.285854	1.646873
14	1	3.197879	-0.175027	1.701056
15	1	1.831651	0.198338	3.802888
16	1	1.537359	-1.347905	3.015219
17	1	-2.219530	1.273540	1.647025
18	1	-1.447074	2.857093	1.700804
19	1	-1.086685	1.487721	3.802840
20	1	0.399351	2.005888	3.014727
21	1	0.007227	-2.558746	1.647475
22	1	-1.750387	-2.681384	1.701593
23	1	-0.744163	-1.684313	3.803255
24	1	-1.936057	-0.656555	3.015215
25	1	0.480475	-0.898770	-2.195221
26	1	0.538040	0.864980	-2.195496
27	1	-1.018201	0.032957	-2.195376

B3LYP-D3/cc-pVTZ

E(RB3LYP) = -846.084482949

#	Ζ	Х	у	Z
1	14	0.000170	0.000073	0.021682
2	7	0.000226	0.000444	2.796541
3	8	1.561451	-0.314931	0.494044
4	8	-0.507472	1.509789	0.493915
5	8	-1.053356	-1.194376	0.494286
6	6	2.167057	0.188826	1.669067
7	6	1.415083	-0.272390	2.921906
8	6	-1.246523	1.782486	1.668921
9	6	-0.470926	1.362178	2.921739
10	6	-0.919985	-1.970517	1.669453
11	6	-0.943472	-1.088442	2.922109
12	6	0.000068	-0.000230	-1.834070
13	1	2.193312	1.283376	1.634523
14	1	3.199322	-0.166350	1.698541
15	1	1.857775	0.200498	3.809998
16	1	1.546383	-1.349210	3.031922
17	1	-2.207474	1.257777	1.634519
18	1	-1.455226	2.854015	1.698219
19	1	-1.101660	1.509267	3.809908
20	1	0.395975	2.014354	3.031459
21	1	0.014751	-2.540620	1.635063
22	1	-1.743755	-2.686844	1.699015
23	1	-0.755285	-1.708068	3.810339
24	1	-1.941690	-0.663755	3.032008
25	1	0.475834	-0.903199	-2.217530
26	1	0.544087	0.863202	-2.217835
27	1	-1.019786	0.039107	-2.217601

E(RB3LYP) = -845.989638011

#	Ζ	X	У	Ζ
1	14	0.000082	0.000049	0.037808
2	7	0.000204	0.000469	2.727088
3	8	1.588322	-0.267583	0.483260
4	8	-0.562305	1.509350	0.483152
5	8	-1.025764	-1.241544	0.483523
6	6	2.198013	0.198667	1.672634
7	6	1.416756	-0.270430	2.909045
8	6	-1.270742	1.804336	1.672605
9	6	-0.473493	1.362692	2.908902
10	6	-0.926644	-2.002335	1.673094
11	6	-0.942665	-1.090843	2.909203
12	6	0.000074	-0.000185	-1.819837
13	1	2.255179	1.294786	1.657487
14	1	3.221507	-0.185940	1.703170
15	1	1.825065	0.201865	3.816066
16	1	1.545968	-1.349885	3.019588
17	1	-2.248477	1.305555	1.657783
18	1	-1.449634	2.882979	1.702949
19	1	-1.086418	1.480317	3.816071
20	1	0.396714	2.014414	3.019020
21	1	-0.005731	-2.599547	1.658190
22	1	-1.771222	-2.696698	1.703750
23	1	-0.738000	-1.680270	3.816482
24	1	-1.942164	-0.663042	3.019299
25	1	0.487859	-0.898389	-2.205926
26	1	0.534023	0.871256	-2.206175
27	1	-1.021624	0.026413	-2.206092

E(RB3LYP) = -845.985283978

#	Ζ	Х	у	Z
1	14	-3.195683	0.096184	1.216658
2	7	-0.548451	0.259844	1.328888
3	8	-2.660284	-0.963950	0.036939
4	8	-2.804283	-0.432812	2.753034
5	6	-1.437948	-0.900143	-0.671014
6	6	-0.239849	-0.701752	0.280901
7	6	-1.589465	-1.066262	3.100346
8	6	-0.394422	-0.190371	2.707970
9	8	-2.846513	1.695187	0.876847
10	6	-1.660080	2.219764	0.316161
11	6	-0.406392	1.675924	1.031097
12	6	-5.052519	0.023844	1.188024
13	1	-5.441718	0.383066	0.232729
14	1	-5.400786	-1.000378	1.340291
15	1	-5.473062	0.645230	1.982475
16	1	-1.691577	3.309178	0.413195
17	1	0.486168	1.883516	0.420630
18	1	-0.287098	2.208133	1.976343
19	1	-1.621272	1.993095	-0.756226
20	1	-1.316074	-1.837661	-1.221854
21	1	-1.475217	-0.092742	-1.412001
22	1	-0.010102	-1.657837	0.757224
23	1	0.647584	-0.403918	-0.298568
24	1	-1.522271	-2.045224	2.606888
25	1	-1.589869	-1.239938	4.180346
26	1	0.547283	-0.736527	2.871920
27	1	-0.382957	0.690559	3.351960

E(RM062X) = -845.732920465

#	Ζ	Х	у	Z
1	14	0.000103	0.000098	0.041406
2	7	0.000232	0.000426	2.736510
3	8	1.558779	-0.334612	0.508018
4	8	-0.489223	1.517370	0.507919
5	8	-1.069160	-1.182247	0.508285
6	6	2.167694	0.189482	1.666043
7	6	1.411221	-0.272228	2.913014
8	6	-1.247511	1.782703	1.665972
9	6	-0.469156	1.358710	2.912871
10	6	-0.919680	-1.971408	1.666453
11	6	-0.941376	-1.085175	2.913224
12	6	0.000089	-0.000235	-1.805636
13	1	2.174403	1.285655	1.620058
14	1	3.203529	-0.155236	1.693587
15	1	1.823856	0.206549	3.812355
16	1	1.540824	-1.351983	3.022063
17	1	-2.200125	1.240307	1.620085
18	1	-1.466998	2.852102	1.693430
19	1	-1.089877	1.476878	3.812346
20	1	0.401105	2.010941	3.021496
21	1	0.026308	-2.525272	1.620576
22	1	-1.736106	-2.696132	1.694146
23	1	-0.733128	-1.681716	3.812713
24	1	-1.941292	-0.657555	3.022102
25	1	0.449226	-0.918146	-2.188722
26	1	0.570432	0.847515	-2.189123
27	1	-1.019287	0.069667	-2.189052

#	Ζ	Х	У	Ζ
1	14	0.000140	0.000047	0.129543
2	7	0.000213	0.000390	2.548151
3	8	1.634580	-0.197533	0.472196
4	8	-0.645912	1.514368	0.472022
5	8	-0.988217	-1.316546	0.472434
6	6	2.222030	0.222082	1.682266
7	6	1.393299	-0.305303	2.853316
8	6	-1.302832	1.813532	1.682146
9	6	-0.431541	1.359742	2.853135
10	6	-0.918638	-2.034813	1.682680
11	6	-0.961092	-1.053139	2.853493
12	6	0.000084	-0.000217	-1.728132
13	1	2.272629	1.319157	1.720658
14	1	3.243940	-0.166369	1.727761
15	1	1.717844	0.117821	3.815665
16	1	1.502854	-1.392798	2.895293
17	1	-2.278220	1.308822	1.720795
18	1	-1.477371	2.892766	1.727469
19	1	-0.960088	1.429424	3.815559
20	1	0.455487	1.998374	2.894844
21	1	0.006155	-2.627161	1.721284
22	1	-1.766005	-2.725576	1.728275
23	1	-0.757003	-1.545536	3.815975
24	1	-1.957671	-0.604259	2.895286
25	1	0.517361	-0.882724	-2.113216
26	1	0.505654	0.888939	-2.113467
27	1	-1.022798	-0.007031	-2.113293

#	Ζ	Х	У	Z
1	14	-3.116729	0.104710	1.221961
2	7	-0.689327	0.255095	1.329382
3	8	-2.670460	-0.916611	-0.036610
4	8	-2.801173	-0.505850	2.754598
5	6	-1.427744	-0.870291	-0.699733
6	6	-0.292439	-0.721435	0.319634
7	6	-1.572433	-1.101009	3.099815
8	6	-0.436729	-0.160904	2.707822
9	8	-2.846468	1.735451	0.913583
10	6	-1.677277	2.223095	0.297883
11	6	-0.438742	1.655972	1.005977
12	6	-4.972958	0.031922	1.209168
13	1	-5.369234	0.415397	0.265935
14	1	-5.319061	-0.996272	1.340762
15	1	-5.385134	0.634392	2.023120
16	1	-1.676124	3.315371	0.369635
17	1	0.465462	1.784478	0.392678
18	1	-0.299232	2.197326	1.944901
19	1	-1.666503	1.960522	-0.767326
20	1	-1.300173	-1.800918	-1.262097
21	1	-1.407076	-0.041939	-1.418579
22	1	-0.152063	-1.683748	0.819949
23	1	0.653123	-0.445690	-0.171388
24	1	-1.461078	-2.068634	2.590345
25	1	-1.562348	-1.283832	4.178677
26	1	0.550332	-0.629442	2.839035
27	1	-0.495268	0.726853	3.342076

Cartesian coordinates (Å) for molecules 1-2

H₃Si(CH₂)₃NMe₂ (2a), CCSD/6-311G(d,p) E(CCSD)=-542.6521219 au

6	1.761924	0.765052	-0.264652
14	1.650837	-1.089868	0.130102
1	0.977359	-1.899985	-0.906254
6	0.575692	1.655296	0.146199
6	-0.740184	1.177747	-0.470423
7	-1.068216	-0.177652	-0.021191
6	-1.687311	-0.168381	1.301027
6	-1.932776	-0.864139	-0.975103
1	3.062465	-1.566396	0.154429
1	1.099509	-1.362768	1.475676
1	2.676889	1.139391	0.214587
1	1.930322	0.866654	-1.347660
1	0.488427	1.678777	1.240161
1	0.754325	2.691301	-0.173261
1	-1.561560	1.885611	-0.250228
1	-0.620249	1.149674	-1.561492
1	-2.142667	-1.876015	-0.611936
1	-2.895343	-0.340094	-1.123509
1	-1.424153	-0.946112	-1.941234
1	-1.826802	-1.198937	1.644565
1	-1.039123	0.339336	2.020322
1	-2.670047	0.339366	1.294139

H₃Si(CH₂)₃NMe₂ (2a), MP2/6-311G(d,p) E(MP2)=-542.5603511 au

6	1.751110	0.761379	-0.248382
14	1.578890	-1.097638	0.091948
1	0.904426	-1.869365	-0.971714
6	0.582538	1.667111	0.161291

6	-0.727985	1.194025	-0.459579
7	-1.036259	-0.167010	-0.020477
6	-1.645094	-0.170237	1.304355
6	-1.908132	-0.848106	-0.968820
1	2.981832	-1.602510	0.101924
1	1.035068	-1.403887	1.432277
1	2.667638	1.094455	0.253789
1	1.940529	0.882494	-1.324302
1	0.490778	1.688506	1.253259
1	0.769880	2.700633	-0.155660
1	-1.557671	1.888628	-0.232550
1	-0.606854	1.173534	-1.549661
1	-2.103828	-1.864255	-0.614743
1	-2.874648	-0.328784	-1.094308
1	-1.412547	-0.912907	-1.941018
1	-1.774383	-1.202703	1.640694
1	-0.995740	0.336532	2.020680
1	-2.629746	0.330594	1.304219

H₃Si(CH₂)₃NMe₂ (2a), MP2/aug-cc-pVTZ E(MP2)= -542.7896729 au

1.759831	0.745810	-0.205058
1.504974	-1.115543	0.075778
0.829776	-1.838816	-1.027452
0.597058	1.675665	0.141485
-0.694468	1.190084	-0.496001
-1.013662	-0.152358	-0.019368
-1.609863	-0.122547	1.307465
-1.892381	-0.852808	-0.941979
2.895409	-1.668863	0.083927
0.945353	-1.460142	1.405007
2.649650	1.028093	0.362800
2.029093	0.869981	-1.259425
0.476185	1.731565	1.225151
0.800187	2.694370	-0.197568
-1.527071	1.887327	-0.312372
-0.551152	1.130640	-1.578282
-2.077944	-1.860896	-0.571514
-2.859111	-0.341471	-1.060441
-1.412425	-0.927879	-1.916931
-1.763853	-1.143355	1.656033
-0.946048	0.374614	2.011437
-2.577633	0.401152	1.305267
	$\begin{array}{r} 1.759831\\ 1.504974\\ 0.829776\\ 0.597058\\ -0.694468\\ -1.013662\\ -1.609863\\ -1.892381\\ 2.895409\\ 0.945353\\ 2.649650\\ 2.029093\\ 0.476185\\ 0.800187\\ -1.527071\\ -0.551152\\ -2.077944\\ -2.859111\\ -1.412425\\ -1.763853\\ -0.946048\\ -2.577633\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

H₃Si(CH₂)₃NMe₂ (2a), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -542.5654736 au

6	1.751009	0.781667	-0.261472
14	1.641632	-1.082716	0.092505
1	0.968710	-1.872138	-0.958433
6	0.565482	1.662563	0.172897

6	-0.750993	1.188667	-0.446680
7	-1.062566	-0.180636	-0.020112
6	-1.679801	-0.197266	1.305878
6	-1.933707	-0.853396	-0.982194
1	3.054509	-1.555219	0.097514
1	1.103707	-1.387493	1.435334
1	2.667702	1.145453	0.222373
1	1.915280	0.907288	-1.342349
1	0.483807	1.665530	1.267103
1	0.738700	2.704477	-0.129465
1	-1.577897	1.883956	-0.207809
1	-0.636216	1.181174	-1.538464
1	-2.132803	-1.873476	-0.637838
1	-2.900166	-0.332004	-1.109596
1	-1.432688	-0.910482	-1.953410
1	-1.813507	-1.234418	1.629694
1	-1.031667	0.300321	2.031455
1	-2.664298	0.306104	1.309018

H₃Si(CH₂)₃NMe₂ (2a), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -542.803576 au

6	1.761660	0.768828	-0.233088
14	1.595152	-1.097121	0.094071
1	0.915122	-1.860475	-0.977264
6	0.576729	1.666825	0.145704
6	-0.722650	1.179026	-0.485651
7	-1.048595	-0.169473	-0.017049
6	-1.660176	-0.144922	1.307847
6	-1.922839	-0.864404	-0.955259
1	2.999610	-1.608255	0.102573
1	1.043177	-1.414353	1.432637
1	2.658012	1.099442	0.299907
1	1.988142	0.890912	-1.298570
1	0.471003	1.700859	1.232700
1	0.760293	2.695417	-0.177899
1	-1.549712	1.880546	-0.290564
1	-0.588056	1.130265	-1.569890
1	-2.119023	-1.872709	-0.588967
1	-2.886350	-0.348309	-1.086890
1	-1.431000	-0.940768	-1.924958
1	-1.819457	-1.167730	1.650294
1	-1.002056	0.348831	2.020554
1	-2.628006	0.380223	1.301369

F₃SiCH₂NMe₂ (2b), CCSD/6-311G(d,p) E(CCSD)=-761.6636817 au

14	1.114213	-0.051042	-0.010635
6	-0.544978	-0.511347	-0.690445
7	-1.617253	-0.069528	0.212216

9	2.256441	-0.396365	-1.065337
9	1.435961	-0.869666	1.311574
9	1.261729	1.493030	0.344745
1	-0.546608	-1.609336	-0.726229
1	-0.688304	-0.169309	-1.732719
6	-1.979159	1.320127	-0.061427
6	-2.792358	-0.926273	0.076951
1	-2.393514	1.446164	-1.080255
1	-2.730728	1.648012	0.663433
1	-1.102597	1.964852	0.038684
1	-3.193654	-0.926561	-0.954323
1	-2.535897	-1.953459	0.355088
1	-3.576273	-0.572679	0.754454

F₃SiCH₂NMe₂ (2b), MP2/6-311G(d,p) E(MP2)=-761.6168225 au

14	1.107974	-0.050521	-0.011023
6	-0.548492	-0.512186	-0.691049
7	-1.611955	-0.069741	0.218333
9	2.256485	-0.380121	-1.070935
9	1.430352	-0.884073	1.307128
9	1.244311	1.495477	0.360903
1	-0.550253	-1.609053	-0.722978
1	-0.700224	-0.172483	-1.732095
6	-1.973890	1.315634	-0.064503
6	-2.787244	-0.921782	0.079704
1	-2.388471	1.431415	-1.083294
1	-2.724428	1.647259	0.657136
1	-1.098502	1.959886	0.029648
1	-3.185123	-0.916812	-0.951661
1	-2.533603	-1.948630	0.354760
1	-3.569916	-0.567651	0.755700

F₃SiCH₂NMe₂ (2b), MP2/aug-cc-pVTZ E(MP2)= -762.0029289 au

14	1.113781	-0.054667	-0.008526
6	-0.560890	-0.570495	-0.614595
7	-1.635201	-0.073417	0.243748
9	2.231251	-0.524178	-1.041754
9	1.449598	-0.728089	1.390001
9	1.280101	1.517552	0.176784
1	-0.549340	-1.663661	-0.564066
1	-0.709337	-0.314210	-1.677017
6	-1.944765	1.314086	-0.076203
6	-2.830356	-0.887585	0.072575
1	-2.287718	1.422190	-1.117848
1	-2.733739	1.667038	0.585665
1	-1.069180	1.943119	0.066268
1	-3.193027	-0.869987	-0.967441
1	-2.616761	-1.918357	0.350624

1 -3.619908 -0.510482 0.720996

F₃SiCH₂NMe₂ (2b), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -761.5876054 au

14	1.111880	-0.050017	-0.010669
6	-0.547847	-0.507758	-0.696334
7	-1.617389	-0.068347	0.215468
9	2.260715	-0.382991	-1.069263
9	1.431759	-0.884559	1.307421
9	1.254277	1.495263	0.361287
1	-0.551262	-1.605400	-0.735731
1	-0.695239	-0.160791	-1.736092
6	-1.986793	1.320717	-0.063618
6	-2.792536	-0.929254	0.081917
1	-2.406818	1.439869	-1.080449
1	-2.735229	1.647820	0.664142
1	-1.111693	1.967679	0.029270
1	-3.195984	-0.929932	-0.948047
1	-2.531606	-1.954961	0.359377
1	-3.574486	-0.577271	0.761825

F₃SiCH₂NMe₂ (2b), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -761.9802152 au

14	1.118267	-0.053728	-0.007982
6	-0.559825	-0.564189	-0.621091
7	-1.640948	-0.071434	0.239873
9	2.234453	-0.525205	-1.040445
9	1.450656	-0.731576	1.388178
9	1.292131	1.516181	0.180373
1	-0.550410	-1.658196	-0.577919
1	-0.704149	-0.300813	-1.682222
6	-1.959563	1.319898	-0.075305
6	-2.835328	-0.896113	0.075152
1	-2.308453	1.432846	-1.114570
1	-2.746314	1.666918	0.593609
1	-1.084863	1.951532	0.066449
1	-3.204488	-0.886058	-0.962877
1	-2.613319	-1.924810	0.357372
1	-3.623975	-0.521370	0.727297

F₃SiN(Me)NMe₂ (2c), CCSD/6-311G(d,p) E(CCSD) = -816.8835524 au

14	1.115957	-0.100996	-0.000309
7	-0.414844	0.581278	0.000206
7	-1.354123	-0.488502	-0.000100
6	-2.165545	-0.504284	1.215537
6	-2.165964	-0.503218	-1.215471
1	-1.499055	-0.493940	2.081692

1	-2.751775	-1.428505	1.228827
1	-2.860643	0.349340	1.279908
1	-1.499771	-0.492135	-2.081844
1	-2.752212	-1.427419	-1.229357
1	-2.861075	0.350468	-1.278864
9	1.412057	-1.015057	-1.266160
9	1.412509	-1.016046	1.264724
9	2.193548	1.070900	-0.000033
6	-0.854342	1.970812	0.001032
1	-1.443704	2.211631	0.894329
1	0.038220	2.602233	0.000948
1	-1.444427	2.212433	-0.891567

 $F_3SiN(Me)NMe_2(2c)$, MP2/6-311G(d,p) E(MP2) = -816.8313659 au

14	1.108591	-0.107958	-0.000151
7	-0.416639	0.591415	-0.000341
7	-1.346082	-0.487864	-0.000335
6	-2.157633	-0.502601	1.212870
6	-2.158859	-0.501431	-1.212725
1	-1.491338	-0.487390	2.076944
1	-2.739699	-1.427411	1.227190
1	-2.854215	0.348263	1.272476
1	-1.493427	-0.485378	-2.077448
1	-2.741014	-1.426185	-1.227387
1	-2.855430	0.349556	-1.270799
9	1.398652	-1.025763	-1.270850
9	1.397567	-1.027431	1.269627
9	2.199120	1.059201	0.001042
6	-0.864080	1.975049	0.000647
1	-1.453346	2.212957	0.892755
1	0.025790	2.607698	0.001225
1	-1.453149	2.214266	-0.891242

F₃SiN(Me)NMe₂ (2c), MP2/aug-cc-pVTZ E(MP2)= -817.2604626 au

14	-1.116213	-0.105575	0.000010
7	0.416989	0.583357	-0.000050
7	1.348852	-0.494797	0.000049
6	2.163681	-0.498959	-1.207821
6	2.163743	-0.498679	1.207878
1	1.508197	-0.495372	-2.075612
1	2.759549	-1.410033	-1.215906
1	2.844955	0.359356	-1.261774
1	1.508302	-0.494844	2.075702
1	2.759583	-1.409769	1.216171
1	2.845044	0.359631	1.261576
9	-1.407367	-1.022525	1.265276
9	-1.407184	-1.023074	-1.264898

9	-2.194557	1.066841	-0.000303
6	0.873003	1.959872	-0.000134
1	1.462919	2.191603	-0.888322
1	-0.005748	2.601180	-0.000321
1	1.462696	2.191798	0.888152

$F_3SiN(Me)NMe_2(2c)$, SCS-MP2/6-311G(d,p) E(SCS-MP2) = -816.7975192 au

14	1.111794	-0.109808	-0.000078
7	-0.415327	0.587756	0.000047
7	-1.355461	-0.487722	-0.000219
6	-2.169568	-0.499045	1.216687
6	-2.170092	-0.497948	-1.216785
1	-1.502769	-0.487732	2.081904
1	-2.755840	-1.422733	1.229900
1	-2.863126	0.355343	1.277570
1	-1.503654	-0.485526	-2.082266
1	-2.756152	-1.421759	-1.230768
1	-2.863864	0.356358	-1.276460
9	1.403493	-1.028106	-1.269942
9	1.402965	-1.029558	1.268877
9	2.201653	1.057664	0.000783
6	-0.853086	1.979364	0.000567
1	-1.441681	2.220810	0.893440
1	0.042106	2.606427	0.001147
1	-1.441145	2.221660	-0.892435

F₃SiN(Me)NMe₂ (2c), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -817.2337554 au

14	-1.118699	-0.107292	0.000005
7	0.415136	0.581960	-0.000055
7	1.356767	-0.493374	0.000036
6	2.173263	-0.496958	-1.211935
6	2.173291	-0.496730	1.211990
1	1.516601	-0.495191	-2.079649
1	2.769615	-1.408706	-1.219351
1	2.854127	0.362006	-1.268456
1	1.516648	-0.494763	2.079719
1	2.769621	-1.408491	1.219586
1	2.854176	0.362231	1.268317
9	-1.410742	-1.023885	1.263994
9	-1.410587	-1.024378	-1.263658
9	-2.197685	1.062996	-0.000271
6	0.863801	1.965430	-0.000107
1	1.452982	2.199742	-0.888827
1	-0.019068	2.602214	-0.000274
1	1.452763	2.199892	0.888720

F₃SiN(SiMe₃)NMe₂ (2d), CCSD/6-311G(d,p) E(CCSD)=-1185.5907179 au

14	1.562551	-0.512895	0.001228
7	0.024624	0.171245	-0.102186
7	0.488078	1.547725	0.022944
6	0.239707	2.326851	-1.188713
6	-0.003899	2.195032	1.234679
1	0.636090	1.776849	-2.044879
1	0.778410	3.276157	-1.098387
1	-0.827512	2.536446	-1.349662
1	0.255927	1.576865	2.097209
1	0.490731	3.166927	1.331560
1	-1.094479	2.356165	1.214547
9	2.333914	-0.199090	1.358397
9	2.529992	-0.099630	-1.192455
9	1.458648	-2.105500	-0.057232
14	-1.640163	-0.440234	-0.030184
6	-2.214242	-0.630454	1.749250
1	-3.210355	-1.091044	1.780886
1	-1.531985	-1.277046	2.314751
1	-2.276590	0.330742	2.272137
6	-1.619972	-2.117029	-0.863271
1	-1.278367	-2.040655	-1.902059
1	-0.966753	-2.826891	-0.347152
1	-2.635805	-2.532534	-0.871218
6	-2.817841	0.708679	-0.936897
1	-2.522739	0.852918	-1.982132
1	-3.818253	0.255845	-0.931836
1	-2.904745	1.693462	-0.464249

F₃SiN(SiMe₃)NMe₂ (2d), MP2/6-311G(d,p) E(MP2)=-1185.5016316 au

14	0.598646	-0.721890	-0.022541
7	-0.757674	0.279342	-0.122790
7	0.042937	1.493222	0.021297
6	-0.008980	2.326093	-1.176788
6	-0.273971	2.225225	1.241212
1	0.236837	1.706871	-2.039912
1	0.746083	3.110760	-1.075996
1	-0.992799	2.790731	-1.324599
1	-0.184126	1.547695	2.091350
1	0.450303	3.036588	1.352688
1	-1.286955	2.655965	1.218639
9	1.414539	-0.614072	1.347466
9	1.641343	-0.528577	-1.216381
9	0.141437	-2.256834	-0.103245
14	-2.519578	0.094747	-0.036789
6	-3.114270	0.064350	1.742270
1	-4.190856	-0.137201	1.778179
1	-2.609536	-0.725079	2.308515

1	-2.936916	1.013433	2.256244
6	-2.896639	-1.542807	-0.853785
1	-2.571086	-1.546626	-1.898077
1	-2.402730	-2.374289	-0.346000
1	-3.976959	-1.722531	-0.833651
6	-3.376080	1.491150	-0.949630
1	-3.046500	1.555103	-1.990392
1	-4.455096	1.298470	-0.950952
1	-3.220349	2.465442	-0.477409

F₃SiN(SiMe₃)NMe₂ (2d), MP2/aug-cc-pVTZ E(MP2)= -1186.0292308 au

14	1.569735	-0.503485	0.002772
7	0.010942	0.140215	-0.135228
7	0.505663	1.509498	0.029031
6	0.277968	2.305899	-1.169943
6	-0.021872	2.141926	1.227818
1	0.695266	1.780004	-2.024579
1	0.798054	3.255685	-1.048716
1	-0.784846	2.500264	-1.343586
1	0.196527	1.513578	2.088168
1	0.472578	3.104377	1.353964
1	-1.104255	2.309405	1.163204
9	2.291192	-0.215840	1.394581
9	2.562393	-0.049272	-1.156167
9	1.501307	-2.097962	-0.100699
14	-1.661048	-0.436393	-0.040424
6	-2.253002	-0.540178	1.739398
1	-3.240801	-1.003896	1.778304
1	-1.572569	-1.149784	2.335574
1	-2.326517	0.441731	2.206418
6	-1.637034	-2.144326	-0.800150
1	-1.306009	-2.107731	-1.837924
1	-0.971347	-2.812904	-0.255929
1	-2.642502	-2.568245	-0.776049
6	-2.799214	0.706880	-1.000187
1	-2.479956	0.810301	-2.037104
1	-3.806089	0.283671	-0.996782
1	-2.860475	1.700310	-0.555500

F₃SiN(SiMe₃)NMe₂ (2d), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -1185.4685295 au

14	1.560706	-0.520260	0.000954
7	0.018108	0.161624	-0.106982
7	0.513595	1.534286	0.023043
6	0.274389	2.321194	-1.188603
6	0.029268	2.188501	1.237363
1	0.658645	1.764836	-2.045420
1	0.830420	3.259797	-1.096371

1	-0.789514	2.548261	-1.343724
1	0.274334	1.561568	2.097118
1	0.544103	3.149125	1.337475
1	-1.057152	2.370622	1.211898
9	2.332669	-0.217402	1.366490
9	2.536582	-0.112013	-1.194569
9	1.452410	-2.118177	-0.062271
14	-1.656952	-0.427244	-0.030675
6	-2.238374	-0.597121	1.750056
1	-3.239351	-1.046056	1.781273
1	-1.565542	-1.247159	2.321731
1	-2.291912	0.367821	2.265792
6	-1.651755	-2.111576	-0.851378
1	-1.313723	-2.045362	-1.891341
1	-1.000623	-2.820313	-0.331964
1	-2.669593	-2.520952	-0.851705
6	-2.816780	0.732311	-0.949735
1	-2.514057	0.866721	-1.993576
1	-3.822766	0.293113	-0.947785
1	-2.893166	1.720137	-0.482797

F₃SiN(SiMe₃)NMe₂ (2d), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -1186.0069428 au

14	1.573203	-0.505649	0.003261
7	0.018590	0.152308	-0.123684
7	0.495125	1.532613	0.028998
6	0.256270	2.321487	-1.178029
6	-0.036080	2.169425	1.229121
1	0.674273	1.792669	-2.031305
1	0.772298	3.275264	-1.064411
1	-0.807852	2.510683	-1.351178
1	0.195347	1.550473	2.093552
1	0.448921	3.138731	1.344939
1	-1.120955	2.325029	1.171599
9	2.307743	-0.211608	1.384999
9	2.558954	-0.057145	-1.161781
9	1.495186	-2.098112	-0.093150
14	-1.650423	-0.443702	-0.037452
6	-2.246092	-0.566009	1.745029
1	-3.231044	-1.038764	1.779476
1	-1.561767	-1.174626	2.339853
1	-2.329426	0.412194	2.220778
6	-1.623104	-2.151572	-0.810096
1	-1.272552	-2.112759	-1.842634
1	-0.976323	-2.833866	-0.258620
1	-2.634531	-2.565273	-0.809071
6	-2.807720	0.690455	-0.994378
1	-2.495266	0.799062	-2.034000
1	-3.809565	0.252586	-0.987882
1	-2.883078	1.684141	-0.550117

ClH₂SiONMe₂, gauche- (**2e**), CCSD/6-311G(d,p) E(CCSD)=-959.2063619 au

14	0.920388	-0.976681	0.087609
8	-0.544460	-0.544756	0.735399
7	-1.269339	0.193154	-0.284049
17	2.141687	0.654378	-0.201657
1	1.552233	-1.822474	1.104502
1	0.772244	-1.641571	-1.210265
6	-2.500689	-0.562027	-0.503025
6	-1.553080	1.499660	0.307880
1	-3.104846	-0.018910	-1.236591
1	-2.249153	-1.545348	-0.908207
1	-3.067984	-0.686484	0.431364
1	-2.139009	2.076063	-0.415144
1	-2.113494	1.400222	1.249388
1	-0.610470	2.017065	0.496670

ClH₂SiONMe₂, gauche- (**2e**), MP2/6-311G(d,p) E(MP2)=-959.1446701 au

14	0.902225	-0.970077	0.085885
8	-0.555437	-0.556142	0.774653
7	-1.258944	0.186420	-0.271271
17	2.102763	0.667830	-0.224649
1	1.563835	-1.809234	1.089136
1	0.733209	-1.637431	-1.207153
6	-2.488100	-0.561393	-0.505355
6	-1.544990	1.492975	0.311166
1	-3.074365	-0.018835	-1.251294
1	-2.236021	-1.547058	-0.899409
1	-3.069830	-0.675324	0.419917
1	-2.112462	2.068778	-0.424443
1	-2.123478	1.397710	1.240540
1	-0.604378	2.004072	0.516150

ClH₂SiONMe₂, gauche- (**2e**), MP2/aug-cc-pVTZ E(MP2)= -959.4170667 au

14	0 878806	-0 989970	0.078541
8	-0.569199	-0.599660	0.808494
7	-1.211674	0.188700	-0.255065
17	2.051225	0.680709	-0.231288
1	1.581259	-1.846248	1.048703
1	0.680212	-1.645672	-1.222375
6	-2.451231	-0.513734	-0.544846
6	-1.469944	1.490294	0.341358
1	-2.991345	0.059493	-1.297131

1	-2.219151	-1.497322	-0.945708
1	-3.066603	-0.620758	0.354512
1	-1.990585	2.096520	-0.398893
1	-2.082964	1.397183	1.243850
1	-0.522573	1.961357	0.587796

ClH₂SiONMe₂, gauche- (**2e**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -959.1368831 au

14	0.911107	-0.969508	0.089499
8	-0.551671	-0.546434	0.761411
7	-1.275714	0.187788	-0.279659
17	2.120889	0.667524	-0.223685
1	1.561836	-1.803767	1.103073
1	0.752927	-1.643893	-1.201067
6	-2.505939	-0.574487	-0.494029
6	-1.567307	1.497210	0.306975
1	-3.108104	-0.038723	-1.234137
1	-2.249542	-1.559803	-0.889582
1	-3.074541	-0.691659	0.439853
1	-2.150382	2.066998	-0.423063
1	-2.132645	1.399442	1.245051
1	-0.627319	2.017242	0.498179

ClH₂SiONMe₂, gauche- (**2e**), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -959.4141638 au

0.895493	-0.985697	0.085782
-0.561275	-0.582364	0.786138
-1.239970	0.190241	-0.267127
2.080024	0.680023	-0.230441
1.576818	-1.833877	1.076505
0.715626	-1.653003	-1.211572
-2.478086	-0.537286	-0.527239
-1.511302	1.493337	0.333623
-3.044569	0.024392	-1.269962
-2.236952	-1.518301	-0.931002
-3.072780	-0.653071	0.385249
-2.058707	2.087439	-0.398249
-2.103232	1.393751	1.249821
-0.567202	1.982966	0.558234
	0.895493 -0.561275 -1.239970 2.080024 1.576818 0.715626 -2.478086 -1.511302 -3.044569 -2.236952 -3.072780 -2.058707 -2.103232 -0.567202	0.895493-0.985697-0.561275-0.582364-1.2399700.1902412.0800240.6800231.576818-1.8338770.715626-1.653003-2.478086-0.537286-1.5113021.493337-3.0445690.024392-2.236952-1.518301-3.072780-0.653071-2.0587072.087439-2.1032321.393751-0.5672021.982966

ClH₂SiONMe₂, anti- (**2f**), CCSD/6-311G(d,p) E(CCSD)=-959.205623 au

14	0.629206	-0.755772	0.000000
8	-0.625817	0.345575	0.000000
7	0.184776	1.554678	0.000000
17	-0.258000	-2.614170	0.000000
1	1.432518	-0.666817	1.223121
1	1.432518	-0.666817	-1.223121
6	-0.188688	2.286865	-1.208410

6	-0.188688	2.286865	1.208410
1	0.072401	1.687034	-2.083306
1	0.381726	3.220850	-1.231325
1	-1.266427	2.503461	-1.223111
1	0.072401	1.687034	2.083306
1	0.381726	3.220850	1.231325
1	-1.266427	2.503461	1.223111

ClH₂SiONMe₂, anti- (**2f**), MP2/6-311G(d,p) E(MP2)=-959.144603 au

14	0.612904	-0.696439	0.000000
8	-0.711753	0.333682	0.000000
7	0.155212	1.518058	0.000000
17	-0.181154	-2.600692	0.000000
1	1.403127	-0.587269	1.228659
1	1.403127	-0.587269	-1.228659
6	-0.181154	2.262755	-1.208035
6	-0.181154	2.262755	1.208035
1	0.051048	1.649256	-2.079188
1	0.432287	3.166972	-1.230694
1	-1.246298	2.527531	-1.220422
1	0.051048	1.649256	2.079188
1	0.432287	3.166972	1.230694
1	-1.246298	2.527531	1.220422

ClH₂SiONMe₂, anti- (**2f**), MP2/aug-cc-pVTZ E(MP2)= -959.41826 au

14	0.596231	-0.652463	0.000000
8	-0.776105	0.321138	0.000000
7	0.141324	1.478221	0.000000
17	-0.157310	-2.588628	0.000000
1	1.383569	-0.530441	1.236442
1	1.383569	-0.530441	-1.236442
6	-0.157310	2.231171	-1.207982
6	-0.157310	2.231171	1.207982
1	0.047381	1.607868	-2.074272
1	0.491638	3.105554	-1.230209
1	-1.205422	2.542244	-1.219370
1	0.047381	1.607868	2.074272
1	0.491638	3.105554	1.230209
1	-1.205422	2.542244	1.219370

ClH₂SiONMe₂, anti- (**2f**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -959.1365312 au

14	0.631705	-0.722186	0.000000
8	-0.667578	0.337165	0.000000
7	0.167034	1.547531	0.000000
17	-0.201428	-2.610614	0.000000

1	1.428785	-0.618937	1.224596
1	1.428785	-0.618937	-1.224596
6	-0.201428	2.283254	-1.210459
6	-0.201428	2.283254	1.210459
1	0.051221	1.678846	-2.083834
1	0.380527	3.209640	-1.233573
1	-1.276065	2.511423	-1.221770
1	0.051221	1.678846	2.083834
1	0.380527	3.209640	1.233573
1	-1.276065	2.511423	1.221770

ClH₂SiONMe₂, anti- (**2f**), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -959.4148754 au

14	0.612180	-0.680758	0.000000
8	-0.731262	0.325527	0.000000
7	0.153336	1.508910	0.000000
17	-0.176538	-2.601905	0.000000
1	1.406602	-0.558965	1.231022
1	1.406602	-0.558965	-1.231022
6	-0.176538	2.255432	-1.210156
6	-0.176538	2.255432	1.210156
1	0.048930	1.641156	-2.078621
1	0.442548	3.152199	-1.232122
1	-1.235164	2.531221	-1.221481
1	0.048930	1.641156	2.078621
1	0.442548	3.152199	1.232122
1	-1.235164	2.531221	1.221481

(**CF**₃)**F**₂**SiONMe**₂, gauche- (**2g**), CCSD/6-311G(d,p) E(CCSD)=-1034.812434 au

14	0.191123	0.876568	-0.143240
9	-0.060521	1.644965	1.226425
8	-1.185956	0.511402	-0.960438
7	-1.596949	-0.426232	0.091413
6	-2.832156	0.105294	0.668386
1	-3.606963	0.211323	-0.102561
1	-2.625350	1.074912	1.124034
1	-3.164411	-0.591808	1.443275
6	-1.805960	-1.719061	-0.560510
1	-2.589588	-1.644624	-1.326408
1	-0.873349	-2.046447	-1.020757
1	-2.097827	-2.437587	0.210892
9	1.009315	1.876852	-1.072218
6	1.409435	-0.567767	0.171823
9	1.531167	-1.340227	-0.930817
9	2.634394	-0.093948	0.456304
9	1.057183	-1.379277	1.179774

(**CF**₃)**F**₂**SiONMe**₂, gauche- (**2g**), MP2/6-311G(d,p) E(MP2)=-1034.7753796 au

14	0.118286	0.836848	-0.143067
9	-0.143856	1.621588	1.226749
8	-1.233653	0.561304	-1.066595
7	-1.570546	-0.367161	0.038985
6	-2.792802	0.127929	0.668297
1	-3.608517	0.159523	-0.062632
1	-2.609286	1.123061	1.069858
1	-3.041254	-0.551675	1.486567
6	-1.745275	-1.693126	-0.548530
1	-2.580472	-1.682800	-1.257964
1	-0.830921	-1.984308	-1.061463
1	-1.942791	-2.394195	0.265177
9	1.007557	1.843001	-1.017294
6	1.342868	-0.604984	0.165350
9	1.533268	-1.330321	-0.966216
9	2.548236	-0.138459	0.540667
9	0.942743	-1.471888	1.117488

 $(CF_3)F_2SiONMe_2$, gauche- (2g), MP2/aug-cc-pVTZ E(MP2) = -1035.3472216 au

14	-0.086051	-0.837710	-0.138063
9	0.181737	-1.606465	1.234604
8	1.250359	-0.550523	-1.087083
7	1.550423	0.379655	0.037718
6	2.783413	-0.081700	0.663966
1	3.597632	-0.073020	-0.063168
1	2.636734	-1.084757	1.050771
1	3.007379	0.594852	1.486819
6	1.687291	1.712219	-0.536552
1	2.517982	1.727324	-1.244831
1	0.767323	1.987431	-1.041538
1	1.873572	2.406856	0.280283
9	-0.963929	-1.861117	-0.999088
6	-1.351194	0.585771	0.158571
9	-1.574777	1.293316	-0.977303
9	-2.541475	0.098298	0.555546
9	-0.964755	1.477982	1.095271

(**CF**₃)**F**₂**SiONMe**₂, gauche- (**2g**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -1034.7176377 au

14	0.142316	0.842405	-0.145008
9	-0.106475	1.626630	1.225402
8	-1.220547	0.562689	-1.043308
7	-1.597153	-0.364049	0.053601
6	-2.821316	0.164995	0.662765

1	-3.622438	0.229120	-0.083724
1	-2.615455	1.151691	1.077586
1	-3.108070	-0.514084	1.470557
6	-1.805014	-1.681584	-0.554144
1	-2.624255	-1.639115	-1.282490
1	-0.888450	-1.998984	-1.049851
1	-2.044126	-2.383589	0.249252
9	1.029238	1.834843	-1.034009
6	1.346503	-0.618628	0.166498
9	1.514403	-1.356954	-0.961633
9	2.564569	-0.164127	0.523650
9	0.946462	-1.471567	1.132071

 $(CF_3)F_2SiONMe_2$, gauche- (2g), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -1035.2952203 au

14	-0.100986	-0.840697	-0.140064
9	0.156666	-1.608468	1.232502
8	1.241429	-0.553190	-1.072168
7	1.569745	0.376898	0.046424
6	2.805344	-0.107677	0.662181
1	3.612634	-0.120456	-0.073380
1	2.642506	-1.106081	1.056292
1	3.052415	0.568692	1.479506
6	1.731265	1.707048	-0.540397
1	2.552935	1.701055	-1.260053
1	0.810656	2.000262	-1.035092
1	1.943896	2.402135	0.270552
9	-0.977751	-1.855047	-1.009175
6	-1.355153	0.594964	0.159034
9	-1.568039	1.310944	-0.974468
9	-2.552662	0.111698	0.545683
9	-0.970395	1.479249	1.104406

$(CF_3)F_2SiONMe_2$, anti- (2h), CCSD/6-311G(d,p) E(CCSD)=-1034.810591 au

14	-0.500871	0.231870	0.000000
6	-1.160807	-1.560227	0.000000
9	-1.085808	0.951017	1.288439
9	-0.744649	-2.240167	1.082856
9	-2.505060	-1.593933	0.000000
8	1.128652	0.122469	0.000000
7	1.521354	1.534109	0.000000
6	2.319639	1.715511	1.211130
1	3.181359	1.033369	1.227543
1	1.687629	1.533500	2.082729
1	2.663089	2.754285	1.229545
9	-1.085808	0.951017	-1.288439
9	-0.744649	-2.240167	-1.082856
6	2.319639	1.715511	-1.211130
1	3.181359	1.033369	-1.227543

1	1.687629	1.533500	-2.082729
1	2.663089	2.754285	-1.229545

(**CF**₃)**F**₂**SiONMe**₂, anti- (2**h**), CCSD/6-311++G(d,p) E(CCSD)= -1034.8454047 au

14	0.333229	0.375704	0.000000
6	-1.286713	1.397939	0.000000
9	1.163586	0.799106	1.287096
9	-2.040355	1.132470	1.083678
9	-1.043492	2.721919	0.000000
8	-0.120650	-1.193786	0.000000
7	1.166471	-1.894944	0.000000
6	1.163586	-2.716216	1.210421
1	0.311925	-3.411654	1.219777
1	1.116708	-2.064435	2.085666
1	2.103965	-3.275734	1.231738
9	1.163586	0.799106	-1.287096
9	-2.040355	1.132470	-1.083678
6	1.163586	-2.716216	-1.210421
1	0.311925	-3.411654	-1.219777
1	1.116708	-2.064435	-2.085666
1	2.103965	-3.275734	-1.231738

(**CF**₃)**F**₂**SiONMe**₂, anti- (2**h**), MP2/6-311G(d,p) E(MP2)=-1034.7723229 au

14	-0.257860	0.254312	0.000000
6	-1.151235	-1.437099	0.000000
9	-0.821301	0.961071	1.320991
9	-0.821301	-2.172285	1.086091
9	-2.494842	-1.313611	0.000000
8	1.352405	-0.160290	0.000000
7	1.509385	1.316315	0.000000
6	2.229980	1.676257	1.217514
1	3.215292	1.197345	1.230710
1	1.647230	1.358896	2.080776
1	2.334067	2.763561	1.232123
9	-0.821301	0.961071	-1.320991
9	-0.821301	-2.172285	-1.086091
6	2.229980	1.676257	-1.217514
1	3.215292	1.197345	-1.230710
1	1.647230	1.358896	-2.080776
1	2.334067	2.763561	-1.232123

 $(CF_3)F_2SiONMe_2$, anti- (2h), MP2/aug-cc-pVTZ E(MP2)= -1035.3448811 au

14	-0.235457	0.268172	0.000000
6	-1.136898	-1.432609	0.000000
9	-0.813670	0.951023	1.322907

9	-0.813670	-2.173869	1.084961
9	-2.482260	-1.309687	0.000000
8	1.373937	-0.184510	0.000000
7	1.479518	1.305101	0.000000
6	2.188481	1.687285	1.214359
1	3.185463	1.243577	1.217576
1	1.625399	1.349250	2.078003
1	2.259303	2.773479	1.228586
9	-0.813670	0.951023	-1.322907
9	-0.813670	-2.173869	-1.084961
6	2.188481	1.687285	-1.214359
1	3.185463	1.243577	-1.217576
1	1.625399	1.349250	-2.078003
1	2.259303	2.773479	-1.228586

$(CF_3)F_2SiONMe_2$, anti- (2h), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -1034.7151264 au

14	-0.320883	-0.331269	0.000000
6	1.248797	-1.423197	0.000000
9	-1.154052	-0.730611	1.297188
9	2.015717	-1.189577	1.087165
9	0.945998	-2.739134	0.000000
8	0.213896	1.222077	0.000000
7	-1.117509	1.868728	0.000000
6	-1.154052	2.686200	1.213408
1	-0.330820	3.413197	1.227440
1	-1.085047	2.030921	2.083145
1	-2.116310	3.206094	1.231833
9	-1.154052	-0.730611	-1.297188
9	2.015717	-1.189577	-1.087165
6	-1.154052	2.686200	-1.213408
1	-0.330820	3.413197	-1.227440
1	-1.085047	2.030921	-2.083145
1	-2.116310	3.206094	-1.231833

(**CF**₃)**F**₂**SiONMe**₂, anti- (2h), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -1035.293232 au

14	-0.242687	0.265841	0.000000
6	-1.143157	-1.438366	0.000000
9	-0.818678	0.952818	1.319171
9	-0.818678	-2.180416	1.085917
9	-2.489191	-1.317402	0.000000
8	1.365229	-0.172070	0.000000
7	1.489890	1.317525	0.000000
6	2.208965	1.689980	1.217796
1	3.200176	1.232276	1.221782
1	1.641202	1.359889	2.082298
1	2.295149	2.775797	1.232068
9	-0.818678	0.952818	-1.319171

9	-0.818678	-2.180416	-1.085917
6	2.208965	1.689980	-1.217796
1	3.200176	1.232276	-1.221782
1	1.641202	1.359889	-2.082298
1	2.295149	2.775797	-1.232068

F₃SiONMe₂ (2i), CCSD/6-311G(d,p) E(CCSD)= -797.5273531 au

7	-0.552360	1.306859	0.000000
14	0.275516	-0.941021	0.000000
9	1.594569	-1.814337	0.000000
9	-0.560453	-1.337071	1.283755
9	-0.560453	-1.337071	-1.283755
8	0.741076	0.623365	0.000000
6	-0.560453	2.124632	1.210996
6	-0.560453	2.124632	-1.210996
1	-1.502852	2.680345	1.232397
1	-0.514167	1.466910	-2.081329
1	-1.502852	2.680345	-1.232397
1	-0.514167	1.466910	2.081329
1	0.288599	2.822784	-1.227529
1	0.288599	2.822784	1.227529

F₃SiONMe₂ (2i), MP2/6-311G(d,p) E(MP2)= -797.4928467 au

7	-0.506709	1.251290	0.000000
14	0.266245	-0.900171	0.000000
9	1.546186	-1.843450	0.000000
9	-0.572705	-1.275560	1.295828
9	-0.572705	-1.275560	-1.295828
8	0.837054	0.640813	0.000000
6	-0.572705	2.060861	1.210227
6	-0.572705	2.060861	-1.210227
1	-1.549963	2.548959	1.230681
1	-0.481875	1.406439	-2.076946
1	-1.549963	2.548959	-1.230681
1	-0.481875	1.406439	2.076946
1	0.226130	2.813436	-1.225555
1	0.226130	2.813436	1.225555

F₃SiONMe₂ (2i), MP2/aug-cc-pVTZ E(MP2)= -797.9087611 au

7	-0.430851	1.166015	0.000000
14	0.243607	-0.828842	0.000000
9	1.460325	-1.858423	0.000000
9	-0.583370	-1.196571	1.307900
9	-0.583370	-1.196571	-1.307900
8	0.969170	0.660363	0.000000

6	-0.583370	1.959444	1.210086
6	-0.583370	1.959444	-1.210086
1	-1.599508	2.349919	1.224852
1	-0.430399	1.322408	-2.075627
1	-1.599508	2.349919	-1.224852
1	-0.430399	1.322408	2.075627
1	0.135043	2.782443	-1.218742
1	0.135043	2.782443	1.218742

F₃SiONMe₂ (2i), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -797.4569128 au

7	-0.541411	1.288716	0.000000
14	0.272840	-0.928658	0.000000
9	1.581114	-1.828264	0.000000
9	-0.566230	-1.317872	1.290049
9	-0.566230	-1.317872	-1.290049
8	0.780583	0.630970	0.000000
6	-0.566230	2.106867	1.212506
6	-0.566230	2.106867	-1.212506
1	-1.521720	2.639081	1.234263
1	-0.502996	1.449791	-2.081423
1	-1.521720	2.639081	-1.234263
1	-0.502996	1.449791	2.081423
1	0.265885	2.824183	-1.226592
1	0.265885	2.824183	1.226592

F₃SiONMe₂ (2i), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -797.8775157 au

7	-0.494013	1.228625	0.000000
14	0.262178	-0.885597	0.000000
9	1.523125	-1.849750	0.000000
9	-0.575071	-1.255574	1.294016
9	-0.575071	-1.255574	-1.294016
8	0.872403	0.642734	0.000000
6	-0.575071	2.040181	1.210603
6	-0.575071	2.040181	-1.210603
1	-1.557716	2.510630	1.227279
1	-0.472421	1.394862	-2.078930
1	-1.557716	2.510630	-1.227279
1	-0.472421	1.394862	2.078930
1	0.206331	2.805522	-1.220818
1	0.206331	2.805522	1.220818

1-methylsilatrane (**1a**), CCSD/6-311++G(d,p) E(CCSD)= -844.0526577 au

14	0.000000	0.000000	1.169338
7	0.000000	0.000000	-1.398809

6	1.242109	-0.717132	-1.648028
6	1.513246	-1.613260	-0.433573
8	1.365830	-0.867698	0.755432
1	1.215328	-1.307385	-2.578720
1	2.052549	0.015674	-1.733424
1	0.816731	-2.464932	-0.431466
1	2.534492	-2.009138	-0.465929
6	-1.242109	-0.717132	-1.648028
6	-2.153747	-0.503880	-0.433573
8	-1.434364	-0.748994	0.755432
1	-1.739893	-0.398813	-2.578720
1	-1.012700	-1.785397	-1.733424
1	-2.543059	0.525157	-0.431466
1	-3.007210	-1.190365	-0.465929
6	0.000000	1.434264	-1.648028
6	0.640501	2.117140	-0.433573
8	0.068534	1.616693	0.755432
1	0.524565	1.706198	-2.578720
1	-1.039849	1.769723	-1.733424
1	1.726329	1.939776	-0.431466
1	0.472719	3.199503	-0.465929
6	0.000000	0.000000	3.025358
1	-0.784603	0.660546	3.411949
1	0.964351	0.349213	3.411949
1	-0.179748	-1.009759	3.411949

1-methylsilatrane (1a), MP2/aug-cc-pVTZ E(MP2)= -844.4016827 au

14	0.000000	0.000000	1.088398
7	0.000000	0.000000	-1.272661
6	0.459081	1.344692	-1.595647
6	-1.394078	-0.274770	-1.595647
6	0.934997	-1.069922	-1.595647
6	0.000000	2.242645	-0.455016
6	-1.942188	-1.121323	-0.455016
6	1.942188	-1.121323	-0.455016
8	0.310410	1.624264	0.771438
8	-1.561859	-0.543309	0.771438
8	1.251449	-1.080955	0.771438
1	0.090939	1.689049	-2.568956
1	-1.508229	-0.765769	-2.568956
1	1.417290	-0.923280	-2.568956
1	1.549015	1.335162	-1.621405
1	-1.930791	0.673905	-1.621405
1	0.381776	-2.009067	-1.621405
1	-1.077911	2.424143	-0.522501
1	-1.560414	-2.145570	-0.522501
1	2.638325	-0.278573	-0.522501
1	0.505349	3.208051	-0.499419
1	-3.030928	-1.166380	-0.499419
1	2.525579	-2.041671	-0.499419

6	0.000000	0.000000	2.951015
1	-0.077052	-1.017266	3.333082
1	0.919505	0.441904	3.333082
1	-0.842452	0.575362	3.333082

 $1-methylsilatrane\,(1a),\,MP2/def2-TZVPP$

E(MP2)= -844.3676258 au

14	0.000000	0.000000	1.092035
7	0.000000	0.000000	-1.287204
6	-0.455276	1.346083	-1.598948
6	0.000000	2.234033	-0.449497
8	-0.319945	1.611091	0.770047
1	-0.085860	1.701190	-2.566847
1	-1.544201	1.339027	-1.627651
1	1.077929	2.410908	-0.510928
1	-0.499014	3.201602	-0.492660
6	1.393380	-0.278761	-1.598948
6	1.934729	-1.117016	-0.449497
8	1.555218	-0.528465	0.770047
1	1.516203	-0.776238	-2.566847
1	1.931732	0.667804	-1.627651
1	1.548943	-2.138968	-0.510928
1	3.022175	-1.168642	-0.492660
6	-0.938104	-1.067322	-1.598948
6	-1.934729	-1.117016	-0.449497
8	-1.235273	-1.082626	0.770047
1	-1.430343	-0.924952	-2.566847
1	-0.387531	-2.006831	-1.627651
1	-2.626873	-0.271940	-0.510928
1	-2.523162	-2.032959	-0.492660
6	0.000000	0.000000	2.950791
1	0.052551	-1.017466	3.334104
1	-0.907427	0.463222	3.334104
1	0.854876	0.554244	3.334104

1-methylsilatrane (**1a**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -843.9070439 au

14	0.000000	0.000000	1.130881
7	0.000000	0.000000	-1.342692
6	1.240399	-0.716145	-1.630378
6	0.000000	1.432289	-1.630378
6	-1.240399	-0.716145	-1.630378
6	2.176510	-0.483998	-0.438425
6	-0.669101	2.126912	-0.438425
6	-1.507410	-1.642914	-0.438425
8	1.473129	-0.715366	0.764615
8	-0.117040	1.633450	0.764615
8	-1.356090	-0.918084	0.764615
1	1.701851	-0.402060	-2.579903
1	-0.502731	1.674877	-2.579903

1	-1.199120	-1.272817	-2.579903
1	1.012991	-1.785246	-1.693385
1	1.039573	1.769899	-1.693385
1	-2.052564	0.015347	-1.693385
1	2.564774	0.544644	-0.458124
1	-1.754062	1.948837	-0.458124
1	-0.810711	-2.493481	-0.458124
1	3.029109	-1.170423	-0.477845
1	-0.500938	3.208497	-0.477845
1	-2.528171	-2.038074	-0.477845
6	0.000000	0.000000	2.991154
1	-0.967267	0.336246	3.378346
1	0.192435	-1.005801	3.378346
1	0.774831	0.669554	3.378346

1-methylsilatrane (1a), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -844.3758276 au

14	0.000000	0.000000	1.115577
7	0.000000	0.000000	-1.316887
6	0.441601	1.357453	-1.616792
6	-1.396390	-0.296289	-1.616792
6	0.954788	-1.061165	-1.616792
6	0.000000	2.235481	-0.447633
6	-1.935983	-1.117740	-0.447633
6	1.935983	-1.117740	-0.447633
8	0.343983	1.605503	0.768116
8	-1.562398	-0.504853	0.768116
8	1.218415	-1.100649	0.768116
1	0.050180	1.725968	-2.573008
1	-1.519822	-0.819526	-2.573008
1	1.469642	-0.906441	-2.573008
1	1.531083	1.359324	-1.669161
1	-1.942751	0.646295	-1.669161
1	0.411668	-2.005619	-1.669161
1	-1.081188	2.406589	-0.486828
1	-1.543573	-2.139631	-0.486828
1	2.624761	-0.266958	-0.486828
1	0.496221	3.206483	-0.486981
1	-3.025007	-1.173502	-0.486981
1	2.528786	-2.032982	-0.486981
6	0.000000	0.000000	2.980148
1	-0.092882	-1.016727	3.364012
1	0.926952	0.427925	3.364012
1	-0.834070	0.588801	3.364012

1-methylsilatrane (**1a**), SCS-MP2/def2-TZVPP E(SCS-MP2)= -844.3404429 au

14	0.000000	0.000000	1.117041
7	0.000000	0.000000	-1.328983
6	-0.439216	1.358281	-1.618447

6	0.000000	2.228103	-0.442846
8	-0.348988	1.594278	0.767243
1	-0.048325	1.735566	-2.570253
1	-1.527658	1.361803	-1.671746
1	1.080548	2.396796	-0.478984
1	-0.491756	3.200244	-0.480618
6	1.395914	-0.298768	-1.618447
6	1.929594	-1.114052	-0.442846
8	1.555179	-0.494906	0.767243
1	1.527207	-0.825932	-2.570253
1	1.943185	0.642089	-1.671746
1	1.535412	-2.134180	-0.478984
1	3.017371	-1.174249	-0.480618
6	-0.956698	-1.059513	-1.618447
6	-1.929594	-1.114052	-0.442846
8	-1.206191	-1.099372	0.767243
1	-1.478882	-0.909634	-2.570253
1	-0.415527	-2.003892	-1.671746
1	-2.615960	-0.262616	-0.478984
1	-2.525615	-2.025995	-0.480618
6	0.000000	0.000000	2.978059
1	0.082482	-1.016160	3.363394
1	-0.921261	0.436648	3.363394
1	0.838779	0.579512	3.363394

1-hydrosilatrane (**1b**), MP2/aug-cc-pVTZ E(MP2)= -805.1589121 au

14	0.000000	0.000000	1.308244
7	0.000000	0.000000	-0.960083
6	-0.477689	1.337108	-1.307120
6	0.000000	2.262022	-0.195381
8	-0.245056	1.646143	1.045829
1	-0.131245	1.653934	-2.296511
1	-1.567488	1.316397	-1.308445
1	1.068369	2.475512	-0.304903
1	-0.535331	3.211304	-0.233200
6	1.396814	-0.254863	-1.307120
6	1.958969	-1.131011	-0.195381
8	1.548130	-0.610847	1.045829
1	1.497971	-0.713306	-2.296511
1	1.923777	0.699286	-1.308445
1	1.609672	-2.162991	-0.304903
1	3.048736	-1.142042	-0.233200
6	-0.919125	-1.082245	-1.307120
6	-1.958969	-1.131011	-0.195381
8	-1.303074	-1.035296	1.045829
1	-1.366726	-0.940628	-2.296511
1	-0.356289	-2.015683	-1.308445
1	-2.678041	-0.312521	-0.304903
1	-2.513406	-2.069262	-0.233200

1-hydrosilatrane (**1b**), MP2/def2-TZVPP E(MP2)= -805.1274424 au

14	0.000000	0.000000	1.307290
7	0.000000	0.000000	-0.968869
6	-0.475147	1.337828	-1.308573
6	0.000000	2.255996	-0.190807
8	-0.248802	1.635910	1.045389
1	-0.129103	1.662183	-2.294612
1	-1.563984	1.318789	-1.311475
1	1.067649	2.468763	-0.298034
1	-0.532395	3.205749	-0.227662
6	1.396167	-0.257425	-1.308573
6	1.953750	-1.127998	-0.190807
8	1.541141	-0.602486	1.045389
1	1.504044	-0.719285	-2.294612
1	1.924097	0.695055	-1.311475
1	1.604187	-2.158993	-0.298034
1	3.042458	-1.141807	-0.227662
6	-0.921020	-1.080403	-1.308573
6	-1.953750	-1.127998	-0.190807
8	-1.292339	-1.033424	1.045389
1	-1.374941	-0.942898	-2.294612
1	-0.360113	-2.013844	-1.311475
1	-2.671836	-0.309770	-0.298034
1	-2.510063	-2.063942	-0.227662
1	0.000000	0.000000	2.774878

1-hydrosilatrane (**1b**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -804.69634 au

14	0.000000	0.000000	1.355150
7	0.000000	0.000000	-1.023879
6	-0.443051	1.360170	-1.341653
6	0.000000	2.247884	-0.172913
8	-0.337290	1.613933	1.042491
1	-0.050835	1.715147	-2.306693
1	-1.536583	1.361149	-1.387610
1	1.084185	2.425641	-0.219939
1	-0.505394	3.218479	-0.213344
6	1.399468	-0.296392	-1.341653
6	1.946725	-1.123942	-0.172913
8	1.566351	-0.514865	1.042491
1	1.510779	-0.813549	-2.306693
1	1.947081	0.650145	-1.387610
1	1.558575	-2.151752	-0.219939
1	3.039981	-1.171556	-0.213344
6	-0.956417	-1.063779	-1.341653
6	-1.946725	-1.123942	-0.172913

8	-1.229062	-1.099068	1.042491
1	-1.459943	-0.901598	-2.306693
1	-0.410498	-2.011294	-1.387610
1	-2.642759	-0.273889	-0.219939
1	-2.534588	-2.046923	-0.213344
1	0.000000	0.000000	2.820216

1-hydrosilatrane (**1b**), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -805.1332429 au

14	0.000000	0.000000	1.324179
7	0.000000	0.000000	-0.981080
6	-0.465762	1.346804	-1.319610
6	0.000000	2.262424	-0.189321
8	-0.262674	1.637300	1.047068
1	-0.102571	1.676365	-2.299471
1	-1.555807	1.333610	-1.340543
1	1.070597	2.474414	-0.281240
1	-0.533823	3.213324	-0.223603
6	1.399247	-0.270041	-1.319610
6	1.959317	-1.131212	-0.189321
8	1.549280	-0.591168	1.047068
1	1.503060	-0.749354	-2.299471
1	1.932844	0.680563	-1.340543
1	1.607607	-2.164371	-0.281240
1	3.049732	-1.144358	-0.223603
6	-0.933486	-1.076763	-1.319610
6	-1.959317	-1.131212	-0.189321
8	-1.286606	-1.046132	1.047068
1	-1.400489	-0.927012	-2.299471
1	-0.377037	-2.014173	-1.340543
1	-2.678204	-0.310043	-0.281240
1	-2.515909	-2.068966	-0.223603
1	0.000000	0.000000	2.794769

1-hydrosilatrane (**1b**), SCS-MP2/def2-TZVPP E(SCS-MP2)= -805.1006716 au

14	0.000000	0.000000	1.324047
7	0.000000	0.000000	-0.990838
6	-0.463056	1.347668	-1.321329
6	0.000000	2.256167	-0.184610
8	-0.267025	1.627027	1.046449
1	-0.099699	1.685094	-2.297311
1	-1.552090	1.336280	-1.343844
1	1.069954	2.467026	-0.273893
1	-0.530575	3.207687	-0.218091
6	1.398643	-0.272816	-1.321329
6	1.953898	-1.128084	-0.184610
8	1.542560	-0.582263	1.046449
1	1.509184	-0.756205	-2.297311
1	1.933298	0.676010	-1.343844

1	1.601530	-2.160120	-0.273893
1	3.043226	-1.144352	-0.218091
6	-0.935587	-1.074853	-1.321329
6	-1.953898	-1.128084	-0.184610
8	-1.275534	-1.044764	1.046449
1	-1.409484	-0.928889	-2.297311
1	-0.381207	-2.012290	-1.343844
1	-2.671484	-0.306906	-0.273893

1-fluorosilatrane (**1c**), MP2/aug-cc-pVTZ E(MP2)= -904.3882443 au

14	0.000000	0.000000	1.043757
7	0.000000	0.000000	-1.175756
6	-0.471886	1.340368	-1.529931
6	0.000000	2.259931	-0.411731
8	-0.262310	1.637710	0.822099
1	-0.114653	1.651963	-2.516182
1	-1.561568	1.322600	-1.540138
1	1.070083	2.469529	-0.509218
1	-0.531725	3.210732	-0.448137
6	1.396736	-0.261519	-1.529931
6	1.957158	-1.129966	-0.411731
8	1.549453	-0.591687	0.822099
1	1.487968	-0.726690	-2.516182
1	1.926189	0.691058	-1.540138
1	1.603633	-2.161484	-0.509218
1	3.046438	-1.144879	-0.448137
6	-0.924850	-1.078849	-1.529931
6	-1.957158	-1.129966	-0.411731
8	-1.287143	-1.046022	0.822099
1	-1.373316	-0.925274	-2.516182
1	-0.364621	-2.013657	-1.540138
1	-2.673717	-0.308045	-0.509218
1	-2.514713	-2.065853	-0.448137
9	0.000000	0.000000	2.653139

1-fluorosilatrane (**1c**), MP2/def2-TZVPP E(MP2)= -904.3533252 au

14	0.000000	0.000000	1.049959
7	0.000000	0.000000	-1.187023
6	-0.468182	1.341095	-1.533024
6	0.000000	2.252386	-0.407190
8	-0.270237	1.626252	0.820486
1	-0.109381	1.661936	-2.514771
1	-1.556908	1.326000	-1.546569
1	1.070024	2.458930	-0.499864
1	-0.526915	3.204673	-0.443164
6	1.395513	-0.265090	-1.533024
6	1.950623	-1.126193	-0.407190
8	1.543494	-0.579094	0.820486

1	1.493969	-0.736241	-2.514771
1	1.926804	0.685322	-1.546569
1	1.594484	-2.156133	-0.499864
1	3.038786	-1.146014	-0.443164
6	-0.927331	-1.076005	-1.533024
6	-1.950623	-1.126193	-0.407190
8	-1.273257	-1.047158	0.820486
1	-1.384588	-0.925694	-2.514771
1	-0.369896	-2.011322	-1.546569
1	-2.664508	-0.302797	-0.499864
1	-2.511871	-2.058659	-0.443164
9	0.000000	0.000000	2.650558

1-fluorosilatrane (**1c**), SCS-MP2/6-311G(d,p) E(SCS-MP2)= -903.8413953 au

14	0.000000	0.000000	1.075415
7	0.000000	0.000000	-1.228051
6	-0.437576	1.362401	-1.562251
6	0.000000	2.249910	-0.392056
8	-0.353810	1.609324	0.814580
1	-0.034860	1.703653	-2.526575
1	-1.530567	1.366386	-1.615383
1	1.084768	2.424483	-0.427402
1	-0.503971	3.220531	-0.432420
6	1.398662	-0.302249	-1.562251
6	1.948479	-1.124955	-0.392056
8	1.570620	-0.498254	0.814580
1	1.492837	-0.821637	-2.526575
1	1.948609	0.642317	-1.615383
1	1.557280	-2.151678	-0.427402
1	3.041047	-1.173814	-0.432420
6	-0.961086	-1.060152	-1.562251
6	-1.948479	-1.124955	-0.392056
8	-1.216811	-1.111070	0.814580
1	-1.457977	-0.882016	-2.526575
1	-0.418041	-2.008703	-1.615383
1	-2.642048	-0.272805	-0.427402
1	-2.537076	-2.046717	-0.432420
9	0.000000	0.000000	2.685944

1-fluorosilatrane (**1c**), SCS-MP2/aug-cc-pVTZ E(SCS-MP2)= -904.3505612 au

14	0.000000	0.000000	1.053662
7	0.000000	0.000000	-1.190301
6	0.461504	-1.348999	-1.540489
6	0.000000	-2.263029	-0.407461
8	0.273831	-1.631699	0.822586
1	0.088909	-1.668958	-2.518928
1	1.551270	-1.337917	-1.568122
1	-1.071269	-2.473859	-0.491392

0.533395	-3.213661	-0.440145
-1.399019	0.274825	-1.540489
-1.959840	1.131514	-0.407461
-1.550008	0.578705	0.822586
-1.489815	0.757482	-2.518928
-1.934305	-0.674480	-1.568122
-1.606790	2.164675	-0.491392
-3.049810	1.144897	-0.440145
0.937516	1.074174	-1.540489
1.959840	1.131514	-0.407461
1.276177	1.052994	0.822586
1.400906	0.911477	-2.518928
0.383035	2.012397	-1.568122
2.678059	0.309183	-0.491392
2.516415	2.068764	-0.440145
0.000000	0.000000	2.661957
	0.533395 -1.399019 -1.959840 -1.550008 -1.489815 -1.934305 -1.606790 -3.049810 0.937516 1.959840 1.276177 1.400906 0.383035 2.678059 2.516415 0.000000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

1-fluorosilatrane (**1c**), SCS-MP2/def2-TZVPP E(SCS-MP2)= -904.3145539 au

14	0.000000	0.000000	1.058478
7	0.000000	0.000000	-1.199961
6	-0.459822	1.349174	-1.542314
6	0.000000	2.256513	-0.403800
8	-0.275597	1.621997	0.821508
1	-0.088432	1.677019	-2.517503
1	-1.548598	1.339608	-1.570306
1	1.070270	2.467236	-0.486937
1	-0.530893	3.207380	-0.435255
6	1.398330	-0.276370	-1.542314
6	1.954197	-1.128256	-0.403800
8	1.542489	-0.572324	0.821508
1	1.496557	-0.761925	-2.517503
1	1.934433	0.671322	-1.570306
1	1.601554	-2.160498	-0.486937
1	3.043119	-1.143923	-0.435255
6	-0.938508	-1.072805	-1.542314
6	-1.954197	-1.128256	-0.403800
8	-1.266892	-1.049673	0.821508
1	-1.408125	-0.915094	-2.517503
1	-0.385835	-2.010929	-1.570306
1	-2.671824	-0.306737	-0.486937