Supporting Information

Blue-AsP monolayer as a promising anode material for lithium-

and sodium-ion batteries: a DFT study

Jing Zhang,^a Yong-Fan Zhang,^a Yi Li,^a Yu-Rong Ren,^b

Shu-Ping Huang*a, Wei Lin*a,c Wen-Kai Chen*a,c,d

Fig. S1 (a) Variations of temperature and energy in the AIMD simulations of *b*-AsP monolayer; (b) Top and side views of $8 \times 8 \times 1$ supercells of the *b*-AsP monolayer after dynamics simulation at 300K.

Fig. S2 Top and side views of the table sites when Li/Na-ion is adsorbed (a) on the As side and (b) on the P side.

Fig. S3 The electronic bands were calculated by using PBE functional of *b*-AsP monolayer adsorbing a (a) Li atom, (b) Na atom. The Fermi level is set to zero energy.

Fig. S4 Top and side views of theoretical maximum Li storage in optimized (a) Li₄AsP, (b) Na₇AsP

Fig. S5 Top and side views of the last snapshots about Li/Na-saturated supercell models from the AIMD simulations at 300 K: (a) Li-AsP (Li₄AsP); (b) Na-AsP (Na₇AsP).