Supplementary Information

Interplay between non-covalent interactions in 1D supramolecular polymers based 1,4-bis(iodoethynyl)benzene

Lucia González,^a Sara Graus,^b Blanca Gaspar,^b Sheila Espasa,^b Adrián Velázquez-Campoy,^c Julen Munarriz,^d José Luis Serrano,^a Rosa M. Tejedor,^e Santiago Uriel,^{*a}

^a Dr. L. González, Prof. J. L. Serrano and Dr. S. Uriel Departamento de Química Orgánica Instituto de Nanociencia de Aragón (INA)-Instituto de Ciencia de Materiales de Aragón (ICMA) Universidad de Zaragoza-CSIC, Zaragoza (Spain) E-mail: suriel@unizar.es ^b Dr. S. Graus, B. Gaspar, S. Espasa Departamento de Química Orgánica Universidad de Zaragoza, Zaragoza (Spain) ^c Dr. A. Velázquez-Campoy Department of Biochemistry and Molecular & Cellular Biology Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI Universidad de Zaragoza, Zaragoza (Spain) Aragon Institute for Health Research, Zaragoza (Spain) Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid (Spain) ARAID Foundation, Gobierno de Aragón, Zaragoza (Spain) ^d Dr. J. Munarriz Departamento de Química Física Instituto de Biocomputación de Sistemas Complejos (BIFI) Universidad de Zaragoza, Zaragoza (Spain) Current address: Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo (Spain) e Dr. R. M. Tejedor Centro Universitario de la Defensa Academia General Militar, Zaragoza (Spain).

Compound	p-BIB	1	2	3
Empirical formula	$C_{10}H_4I_2$	$C_{23}H_{34}Brl_2N$	$C_{22}H_{32}Brl_2N$	$C_{26}H_{40}Brl_2N$
Formula weight	377.93	658.22	644.20	700.30
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
a, Å	4.1533(3)	7.8843(4)	9.9332(4)	17.9505(8)
b, Å	17.1541(16)	14.5796(6)	8.8016(4)	8.6914(4)
c, Å	7.0511(5)	11.5600(4)	14.5701(7)	18.8483(7)
α , deg				
β, deg	95.332(7)	97.065(3)	98.374(4)	90.616(4)
γ, deg				
V, Å ³	500.19(7)	1318.73(10)	1260.25(10)	2940.4(2)
Т, К	150(2)	150(2)	150(2)	150(2)
Space group	P2 ₁ /n	P2 ₁ /m	P2/n	P2/c
Z	2	2	2	4
μ(Mo Kα), mm⁻¹	6.229	3.908	4.087	3.510
θ range, deg	3.14 to 24.71	2.95 to 26.37	2.71 to 25.68	2.81 to 24.71
Refl. collected	1610	5627	6307	42018
Uniq reflect / R _{int}	848 / 0.0464	2803 / 0.0410	2394 / 0.0769	5007 / 0.0403
<i>R1/wR2</i> (Ι>2σ)	0.0434 / 0.0650	0.0480 / 0.0937	0.0431 / 0.0628	0.0553 / 0.1564
<i>R1 /wR2</i> (all data)	0.0693 / 0.0756	0.0712 / 0.1070	0.0943 / 0.0692	0.0785 / 0.1699
Max. shift/esd	0.003	0.007	0.004	0.005
Residual ρ/e Å ⁻³	0.846 and -0.840	1.134 and -0.893	1.033 and -0.600	1.212 and -1.475

 Table S1 Crystallographic data for p-BIB, {p-BIB·DTMABr} (1), {p-BIB·TPABr} (2) and {p-BIB·TBABr} (3).

Table S2 Uncorrected and corrected interaction energies of the optimized trimers, (IBrI)-180, (IBrI)-139 (IBrI)-75, using B3LYP-D3 and 6-311G+(d,p)/DGDZVP or B3LYP-D3 and def2TZVP.

	6-311g+(d,p)/DGDZVP			def2TZVP		
Complex	ΔE	ΔE_{BSSE}		ΔE	ΔE_{BSSE}	
	kJ mol⁻¹	kJ mol⁻¹		kJ mol⁻¹	kJ mol⁻¹	
(IBrl)-180	-38.7	-36.6		-40.3	-38.0	
(IBrI)-139	-39.5	-37.4		-41.2	-38.9	
(IBrl)-75	-39.2	-37.3		-41.1	-39.1	

Table S3 Performance of different methodologies for the {p-BIB·DTMABr} (1) crystal structure.

{p-BIB·DTMABr} Method	a Å	b Å	c Å	∆a %	∆b %	∆c %
Experimental	7.884	14.580	11.560			
revPBE-D3BJ	8.056	14.517	11.742	2.17	-0.43	1.57
SCAN	7.890	14.404	11.571	0.08	-1.21	0.10
SCAN-D3	7.754	14.035	11.294	-1.66	-3.73	-2.30
SCAN-D3BJ	7.732	13.975	11.256	-1.93	-4.14	-2.63

Table S4 Performance of different methodologies for the {p-BIB·TPABr} (2) crystal structure.

{p-BIB·TPABr} Method	a Å	b Å	c Å	∆a %	∆b %	∆c %
Experimental	9.933	8.802	14.570			
revPBE-D3BJ	10.042	8.645	14.691	1.09	-1.78	0.83
SCAN	9.914	8.632	14.578	-0.20	-1.92	0.05
SCAN-D3	9.842	8.424	14.231	-0.92	-4.29	-2.33
SCAN-D3BJ	9.824	8.373	14.234	-1.10	-4.87	-2.30

Table S5 Interactions energies and distance of the $I \cdots Br^-$ contact of optimized $[p-BIB \cdot Br]^-$ and similar dimers extracted from optimized trimer (B3LYP-D3 and 6-311G+(d,p)/DGDZVP).

Complex	ΔE	d(I…Br⁻)
	kJ mol⁻¹	Å
[p-BIB:Br] ⁻	-103.3	3.030
[<i>p</i> -BIB:Br]⁻-180	-100.3	3.168
[<i>p</i> -BIB:Br] [−] 139	-100.5	3.159
[<i>p</i> -BIB:Br] [−] 75	-98.6	3.229

Table S6 Uncorrected and corrected interaction energies (ΔE and ΔE_{BSSE} , respectively) of the dimers (single point calculations) using B3LYP-D3BJ/6-311G+(d,p)/DGDZVP or B3LYP-D3BJ/6-311G+(d,p)/DGDZVP.

	6-311G+(d,p)/DGDZVP		6-311G++(d,p)/DGDZVP	
Complex	ΔE	ΔE_{BSSE}	ΔΕ	ΔE_{BSSE}
	kJ/mol	kJ/mol	kJ/mol	kJ/mol
trans type I I…I in 1	-5.6	-4.9	-5.6	-4.9
1-a	-21.9	-18.8	-21.9	-18.8
2-а	-12.0	-11.3	-12.0	-11.3
2-b	-13.8	-11.5	-13.8	-11.5
3-а	-13.9	-11.6	-13.9	-11.6
3-b	-7.2	-4.3	-7.2	-4.3

Figure S1 Calorimetric titrations of *p*-BIB with bromide salts: (left) TBABr, (center) TPABr, and (right) DTMABr. The upper panels show the thermograms (thermal power as a function of time) and the lower panels report the interaction isotherm (heat evolved associated with each injection, normalized per mole of titrant injected, as a function of the molar ratio). Continuous lines represent the fitting to a 1:1 binding model.

Figure S2 Dimers and trimers extracted of the crystal structures 1, 2 and 3.

Figure S3 (a) Projection view of **1** along *a* axis showing the layered nature of anionic and cationic networks and (b) projection view of **3** along *c* axis. The dashed green line denotes the halogen bond and the dashed blue line denotes the hydrogen bond.

Figure S4 Hirshfeld surfaces (a) and 2D fingerprint plots (b) for the *p*-BIB molecules in *p*-BIB and **1** to **3** crystal structures. For each structure the Hirshfeld surface is shown mapped with d_{norm} (left), curvedness (center) and shape index (right).

Figure S5 Computed electrostatic potential of the optimized geometry of (IBrI)-75 (left), (IBrI)-139 (middle) and (IBrI)-180 (right). Potentials are mapped on the respective electron density isosurfaces (0.002 e/Bohr³).

Calculated gas-phase energy of complexes optimized with B3LYP-D3/6-311G+ (d,p)-DGDZVP and Cartesian coordinates of calculated structures.

(IBrl)-180: Energy (E _m), -31020.0	1562 Hartrees
--	---------------

	3.16806600	0.00565200	-0.01561900
С	5.23277400	0.00930100	-0.02581800
С	6.45081600	0.01219200	-0.03066600
С	7.87102900	0.01595300	-0.03602400
С	8.60287600	0.07030000	1.17096200
Н	8.06151300	0.10916700	2.10522100
С	9.99051100	0.07450200	1.16649800
Н	10.53611800	0.11679500	2.09893400
1	15.35675200	0.03391200	-0.06198200
С	13.34417700	0.03003700	-0.05577200
С	12.13146300	0.02860800	-0.05210700
С	10.70739000	0.02436600	-0.04667300
С	9.98168200	-0.03012100	-1.25441900
Н	10.52059900	-0.06903100	-2.19087600
C	8.59406700	-0.03421900	-1.24847500
Н	8.04599500	-0.07632200	-2.1/868100
Br	0.00000000	0.00000000	0.00000000
	-15.35075200	-0.03391200	0.06198200
	-13.34417700	-0.03003700	0.05577200
C	10 70730000	-0.02000000	0.05210700
C C	0.08168200	-0.02430000	1 25441000
н	-9.90100200	0.03012100	2 19087600
C	-8 59406700	0.00303100	1 24847500
н	-8 04599500	0.00421000	2 17868100
1	-3.16806600	-0.00565200	0.01561900
C	-5.23277400	-0.00930100	0.02581800
č	-6.45081600	-0.01219200	0.03066600
C	-7.87102900	-0.01595300	0.03602400
C	-8.60287600	-0.07030000	-1.17096200
Н	-8.06151300	-0.10916700	-2.10522100
С	-9.99051100	-0.07450200	-1.16649800
Н	-10.53611800	-0.11679500	-2.09893400
		04000 04000 11	1
(IBrI)-13	9; Energy (E _{au}),	-31020.01683 Ha	rtrees
	-2.95835700	1.59581200	0.00617600
	-4.92002000	0.93725800	0.00870300
C	-0.07757000	0.00700100	0.00906000
C	7 01028800	0.12240100	0.00000200
н	-7.22773500	-0.70942900	1 75105000
C	-8 33502300	0 57100000	-0.98010100
н	-7 97955000	1 25389800	-1 73896200
1	-14.57131400	-2.11962900	0.00501600
C	-12.64837300	-1.52726100	0.00391200
C	-11.49083800	-1.16553100	0.00391100
С	-10.13264100	-0.73734900	0.00368200
С	-9.65744100	0.15177900	-0.98218300
Н	-10.33817500	0.50546700	-1.74397900
С	-9.23260900	-1.19045800	0.99003200
Н	-9.58530900	-1.87271400	1.75093300
Br	0.00000600	2.70247600	0.00007000
I	2.95834900	1.59575800	-0.00618900
С	4.91997500	0.93709600	-0.00880300
С	6.07751500	0.55734000	-0.00921800
С	7.42947800	0.12231300	-0.00677100
C	7.91035700	-0.76943300	-0.99103100
Н	1.22/8/400	-1.12089700	-1./5131000
	ö.JJ489400	0.57168300	0.98012800
п I	1.919331UU 14 57124100	1.20300400	1.73904700
Ċ	12 64830500	-2.11900000	-0.00499400
č	11.49085700	-1.16549100	-0.00387500
~			

С	10.13264000	-0.73737400	-0.00368900
С	9.65733000	0.15161200	0.98225200
Н	10.33799500	0.50524000	1.74413800
С	9.23269800	-1.19040100	-0.99015800
н	9.58548300	-1.87254600	-1.75112000
(IBrl)-75	· Energy (E) -31	020 01652 Hartre	es
Rr	_0 01764000	-6 80835200	0 00581300
I	-1 98701400	-4 25045900	0.00001000
Ċ	3 20027100	2 58115500	0.00241600
ĉ	2 01009100	1 50207000	0.00241000
	-3.91090100	-1.59207900	-0.00555600
	-4.73457600	-0.43517400	-0.00970000
	-4.20001100	0.78840100	-0.53772700
Н	-3.26429900	0.83064700	-0.94022800
С	-6.04578700	-0.47303700	0.51423500
Н	-6.41564400	-1.40296800	0.92149700
	-9.06448500	5.67032700	-0.03039000
С	-7.90433400	4.02653300	-0.02534400
С	-7.20282100	3.03727800	-0.02178300
С	-6.37797100	1.87637800	-0.01782500
С	-6.85047700	0.65748700	0.51058000
Н	-7.85199200	0.61238100	0.91534900
С	-5.06967300	1,91962300	-0.54211100
Ĥ	-4 69620300	2 84877200	-0.94951100
i.	9 10332500	5 61759800	0.02788500
Ċ	7 93289900	3 08100000	0.0275000
č	7 22/11700	2 00702400	0.02070300
C C	6 2002/100	2.99702400	0.02020200
	0.39034100	1.04204900	0.01600500
	6.54955200	0.84137700	-0.96406300
Н	7.31652400	0.95897800	-1./1695200
С	5.73548900	-0.28237700	-0.96854700
Н	5.86409500	-1.04455300	-1.72350000
1	1.95683800	-4.25373900	0.00070200
С	3.17741800	-2.58980400	-0.00023800
С	3.89439200	-1.60519900	0.00117600
С	4.72708800	-0.45492900	0.00548500
С	4.57161100	0.55115300	0.98485800
Н	3.80288500	0.43175300	1.73458000
С	5.38501400	1.67532700	0.99058100
Ĥ	5.25266200	2,43697600	1,74635200
••	0.20200200		
[p-BIBBr	1 Energy (E _{au}) -	16796 90333 Har	trees
Br	7 60580600	-0.00002300	0 00000500
1	4 57614900	-0.00002200	-0.00004500
Ċ	2 46327400	0.00002200	-0.0000-000
	1 24150900	0.00000100	-0.00012000
	1.24130000	0.00001700	-0.00017900
	-0.17676500	0.00005100	-0.00012200
C	-0.90796800	1.21056000	-0.00008300
Н	-0.36282800	2.14346900	-0.00010100
С	-0.90802700	-1.21042100	-0.00008900
Н	-0.36293400	-2.14335800	-0.00011000
1	-7.66759400	-0.00005800	0.00010700
С	-5.65476400	0.00008500	0.00008800
С	-4.44158200	0.00016000	0.00005000
С	-3.01796400	0.00012200	-0.00000900
С	-2.29526800	-1.21128800	-0.00003400
H	-2.83743400	-2.14697400	-0.00001200
C	-2 29520900	1 21149600	-0.00002900
й	-2 83732800	2 14720000	
	2.00102000	2.17120000	5.55000500