Electronic Supplementary Information for

Syngas Molecules as Probes for Defects in 2D Hexagonal Boron Nitride: their Adsorption and Vibrations

Authors:

Tao Jiang,^a Duy Le,^{a,b} Takat B. Rawal,^a[†] and Talat S. Rahman^{a,b}*

^aDepartment of Physics, University of Central Florida, Orlando, FL, 32816 USA ^bRenewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, FL, 32816 USA †Present address: Department of Physics, University of Houston, Houston, TX 77204 USA *Email: talat.rahman@ucf.edu

To ensure that sampling of the total energy of the system at a single k-point (Γ point of the twodimensional Brillouin zone) does not lead to systematic errors in the calculated energetics, as a test case, we have carried out calculations of the total energy of the system with the N vacancy, V_N, with and without adsorbed CO, for three additional sets of k-point sampling: 2×2×1, 3×3×1, 4×4×1. The results summarized below in Table S1 show the binding energy of CO calculated from the ionically relaxed structures differ by about 0.007 eV (7 meV). In fact, the Γ point results for total energy of *dh*-BN with V_N, without CO, is also within 0.007 eV, as compared to that obtained with higher number of k-points. The difference is even smaller for system with adsorbed CO. We thus find the computationally efficient Γ point sampling to be reasonable for obtaining binding energies and other energetics, within two decimal point accuracy.

K-point sampling	$\begin{array}{c} \textbf{Total energy of} \\ \textbf{V}_{N}(eV) \end{array}$	Total energy of CO on $V_N(eV)$	Binding Energy (eV)
1×1×1 (Γ)	-19725.44890	-20566.21585	-3.451
2×2×1	-19725.44196	-20566.21506	-3.457
3×3×1	-19725.44217	-20566.21538	-3.457
4×4×1	-19725.44219	-20566.21536	-3.457

Table S1. K-points Sampling Test based on V_N and CO on V_N

Additionally, the calculated reaction pathways for both CO and CO₂ to transit from their physisorbed to chemisorbed states on SW type defect in *dh*-BN are plotted in Figure S1. The reaction barriers of 0.57 eV for CO (Figure S1a) and 1.71 eV for CO₂ should be gauged with the reverse barriers in mind (0.01 eV for CO and 1.08 eV for CO₂).

Figure S1 Reaction pathways from physisorbed to chemisorbed state on SW defect in *dh*-BN: (a) CO (b) CO_2 . In the bottom panel, IS, TS, and FS represent initial, transition and final states, respectively. Blue, pink, black, and red balls represent N, B, C, and O atoms, respectively.