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1 Effectively unpaired electrons and local spin

The scalar field

u(r1;r′1) = 2ρ(r1;r′1)−
∫

ρ(r1;r2)ρ(r2;r′1)dr2, (1)

known as the effectively unpaired electrons density,1 and several of its properties2 have been thor-

oughly investigated. This name seems to be almost always justified since, in many cases, its

integration to all the space in different systems results in what one expects for the number of elec-

trons that are not paired with equivalent electrons of opposite spin. To cite just two very well-know

examples: the integration of u(r) over R3 for a single-electron system correctly predicts a value of

1, as it should. In the limit R→∞ of the properly dissociating H2 molecule in the 1Σ+
g ground elec-

tronic state, the integration of u(r) gives 2, again the correct number. However, some properties

of u(r) incite to think that the name of effectively unpaired electrons density may not be the most

accurate. For instance, the trace of u, that in terms of the occupation numbers, ni, of the natural

orbitals of the system, is given by nd = ∑i ni(2−ni) has an upper limit of 2N,2 i.e. the number of

effectively unpaired electrons can be greater that the number of electron themselves. An example
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of this is a molecule with only spin up or spin down electrons described at the configuration inter-

action level. Another case in which nd ≥ N, also pointed out by Staroverov and Davidson, is the

1Σ+
u excited electronic state of the H2 molecule at large internuclear distances. We will show in

this subsection another counterintuitive behavior of u(r).

Let us consider the two 1Σ+
g states that can be formed for the H2 molecule from a linear combi-

nation of the Slater determinants |σgσ̄g| and |σuσ̄u|: Ψ= c1|σgσ̄g|+c2|σuσ̄u|. The state with c1 and

c2 of the opposite sign corresponds to the ground state cited above, while c1 and c2 with the same

sign indicates an excited state (ES). From |σgσ̄g|= σg(r1)σg(r2)Θ and |σuσ̄u|= σu(r1)σu(r2)Θ,

where Θ = 2−1/2(αβ −βα) is the spin function, the electron density of the above Ψ is given by

ρ(r;r)≡ ρ(r) = ngσ2
g (r)+nuσ2

u (r), where ng = 2c2
1 and nu = 2c2

2, so the natural orbitals are also

σg and σu, and u(r) is given by u(r) = ng(2−ng)σ
2
g (r)+nu(2−nu)σ

2
u (r). For both the ground

and excited states, ng→ 1 and nu→ 1 in the limit R→ ∞. Hence, limR→∞ u(r) = σ2
g (r)+σ2

u (r)

and limR→∞

∫
u(r)dr = 2. On the other hand, given that σg = 2−1/2(a+ b), σu = 2−1/2(a− b),

c1 = −c2 = 2−1/2 (ground state) and c1 = c2 = 2−1/2 (excited state) in the R→ ∞ limit (where

a ≡ 1sA and b ≡ 1sB), the spatial parts of Ψ(ground state) and Ψ(excited state) at large internu-

clear distances behave as

lim
R→∞

Ψ(r1,r2)(ground state) ∼ 2−1/2(ab+ba) (2)

lim
R→∞

Ψ(r1,r2)(excited state) ∼ 2−1/2(aa+bb). (3)

The second equation shows that the wave function for the 1Σ+
g excited state becomes, at large

values of R, into a half-and-half mixture of two ionic components (aa and bb), with both electrons

in each of them with opposite spin. In other words, both electrons have perfectly paired spins,

so a scalar field purportedly giving the number of effectively unpaired electrons at R→ ∞ should

integrate to 0 and not to 2.
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For the above wave function, ρ2(r1,r2;r1,r2) = ρ2(r1,r2;r2,r1) is given by

ρ
2(r1,r2;r1,r2) = 2c2

1σ
2
g (r1)σ

2
g (r2)+2c2

2σ
2
u (r1)σ

2
u (r2)

+ 4c1c2σg(r1)σg(r2)σu(r1)σu(r2). (4)

Taking into account that 〈σg|σg〉A = 〈σu|σu〉A = 〈σg|σg〉B = 〈σu|σu〉B = 1
2 and calling S= 〈σg|σu〉A =

−〈σg|σu〉B, the direct application of Eq. 6 of the main text leads to 〈Ŝ2
A〉= 〈Ŝ2

B〉= 3
8 −3c1c2S2. In

the limit R→ ∞, S = 1
2 , so that limR→∞〈Ŝ2

A〉 = +3/4 and 0 for the the ground and excited states,

respectively. These numbers are the expected ones for the asymptotic limits given by eqs 2 and

3. In the ground state, each atomic basin harbors a single α or β electron, and there is never an

(α,β ) electron pair in any of the two atoms. Hence, the local spin of that basin is simply s(s+1)

with s = 1
2 . On the contrary, in the excited state the (α,β ) electron pair is always in A or B, giving

a null local spin in the R→ ∞ limit.

2 Ramos-Cordoba et al. local spins

As shown in Eq. 12 in the main text, Ramos-Cordoba (RC) and coworkers proposed a one-

parameter family one-parameter family RCa of expressions for 〈Ŝ2〉:

〈Ŝ2〉RCa = a
∫

u(r1)dr1 +(2a−1)
∫∫

Λ(r1,r2;r1,r2)dr1dr2

− 1
2

∫∫
Λ(r1,r2;r2,r1)dr1dr2. (5)

where Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2)−

1
2ρs(r1;r′2)ρ

s(r2,r
′
1), and a is a free parameter. This

expression satisfies Mayer’s requisites and shows correct local spins for one electron systems when

a = 3/4.

Let us examine now the excited 1Σ+
g state of H2 of the previous Section in the dissociation
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limit. The spin density vanishes for a singlet, so that Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2), with

ρ
2(r1,r2;r′1,r

′
2) = ρ(r1;r′1)ρ(r2;r′2)−

1
2

ρ(r1;r′2)ρ(r2;r′1)

− 1
2

ρ
s(r1;r′2)ρ

s(r2;r′1)+Γ(r1,r2;r′1,r
′
2) (6)

defining Γ. With the expressions derived in the previous section, it is easy to show that ρ(r1;r′1) =

2c2
1σg(r1)σg(r

′
1)+ 2c2

2σu(r1)σu(r
′
1), so using the atomic overlap integrals for the σg and σu or-

bitals, including 〈σg|σu〉A = −1/2 in the dissociation limit, we easily come to the following ex-

pressions valid for the dissociated excited singlet:
∫

A u(r)dr = 1,
∫

A
∫

A Γ(r1,r2;r1,r2)dr1dr2 =∫
A
∫

A Γ(r1,r2;r2,r1)dr1dr2 = 1/2. With them, Ramos-Cordoba et al local spin becomes

〈Ŝ2
A〉= a− (1−2a)×1/2−1/4 = 2a−3/4. (7)

As show by RC in their Fig. 2, when a = 3/4, the above expression takes the value 〈Ŝ2
A〉 = 3/4,

and the local spin for the dissociating excited state becomes equal to that of the dissociating ground

state, a notoriously wrong result. It is interesting to notice that if a = 3/8, which coincides with

the expression proposed by Mayer and Matito,3 the local spin tends correctly to zero at dissocia-

tion. Unfortunately, this limit is approached from below, and as RC showed, the local spin in the

CAS[2,2] model becomes negative in all the sgn(c1) = sgn(c2) branch.

3 Reduced density matrices and local spin for open quantum

systems

This is an slightly expanded version of the main text treatment. We start by adopting from the

start a QCT viewpoint. Changing the indicator functions by center projections allows to read the

following in Fock space equally. We thus divide the physical space R3 into a spatial domain A and

its complementary region B = Ā, A∪B = R3 A∩B = /0. Since electrons can freely flow between
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both domains, A and B can be considered as open quantum systems (OQS). In a pure state, the

density operator of a N−electron system can be written as ρ̂(x;x′) = Ψ?(x′)Ψ(x), where x= rσ

denotes a spatial(r)-spin(σ ) coordinate and x stands for x1 · · · ,xN . The reduced density operador

of domain A, ρ̂A, is obtained from ρ̂ by performing a spatial trace over the B region, with the usual

x′i→ xi identification before integration. Defining the indicator function 1A
n = Πn

i=1ωA(xi), where

ωA(xi) is a Heaviside-like domain weight function such that ωA(xi) = 0 for xi /∈ A and ωA(xi) = 1

for xi ∈ A, with an equivalent definition for ωA(x
′
i), ρ̂A can be written in the form4,

ρ̂
A =

N

∑
n=0

ρ
A
n (xi≤n;x′i≤n), (8)

where ρA
0 =

∫
B Ψ?(x)Ψ(x)dx and, for n≥ 1

ρ
A
n (xi≤n;x′i≤n) = 1

′A
n 1A

n

(
N
n

)∫
B

ρ̂(x;x′)dxi>n, (9)

where dxi>n = dxi+1× ·· · × dxN and xi≤n = x1× ·· · ×xn. To simplify the notation, we will

assume that, before doing any integration, the x′i → xi identification has been performed for all

the integrated variables, for instance, x′
i>n→ xi>n in eq 9. The subsystem A is thus described by a

mixed density operator with N +1 possible sector densities ρA
n (n = 0, · · · ,N), each integrating to

pA(n), which is the probability that n and only n electrons reside in domain A and the remaining

N−n electrons in the domain B, i.e. TrρA
n =

∫
A ρA

n dxi≤n = pA(n). Normalized sector densities can

be defined as ρ̃A
n = ρA

n /pA(n), so that Trρ̃A
n = 1 and ρ̂A = ∑n pA(n)ρ̃A

n . Then, each ρ̃A
n can be dealt

with as a pseudo pure system operator.

We define the reduced density matrix of order m≤ n (mRDM) of sector n as

ρ
A,m
n (xi≤m;x′i≤m) =

n!
(n−m)!

∫
ρ

A
n (xi≤n;x′i≤n)dxi>m, (10)

with the spinless mth order RDM given by ρ
A,m
n (ri≤m;r′i≤m) =

∫
ρ

A,m
n (xi≤m;x′i≤m)|σ ′i→σi

dσi≤m.
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Using eq 9, ρ
A,m
n can also be put in the form

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

mΛ
m
N,n

∫
D

ρ(x;x′)dxi>m, (11)

where Λm
N,n = N!/[(N− n)!(n−m)!], D is a domain such that electrons m+ 1 to n are integrated

over A, and electrons n+ 1 to N over B. Adding Λm
N,n
∫

D ρ(x;x′)xi>m for values of n between 0

and N one obtains ρm(xi≤m;x′i≤m), the mRDM of the full A+B system. As a consequence, the

sum of the mRDMs of all sectors n of domain A is given by ρA,m = ∑n ρ
A,m
n = 1

′A
m1A

mρm. If the ρ̃A
n ’s

are used in the rhs integral of eq 10, one obtains ρ̃
A,m
n the normalized mRDMs of sector n. Then,

ρA,m = ∑n pA(n)ρ̃A,m
n . In the following two subsections we will consider separately the RDMs of

OQSs for single-determinant (SDW) and multi-determinant (MDW) wave functions.

3.1 The single-determinant case

Let us consider a N−electron system described by a SDW |Ψ〉 = (N!)−1/2det|u1(x1) · · ·uN(xN)|.

To aid in the derivation of ρA
n and ρ

A,m
n , we will introduce some definitions. We call SA and SB

the N×N atomic overlap matrices (AOM) between the molecular spin-orbitals (MSO) |ui〉 in A

and B, respectively, i.e. SA
i j = 〈ui|u j〉A and SB

i j = 〈ui|u j〉B, k = {k1, · · · ,kn} and l = {l1, · · · , ln} are

two ordered sets (k1 < · · ·< kn and l1 < · · ·< ln) of n≤ N numbers, k̃ and l̃ their complementary

sets of N−n elements, and SA(k|l) and SB(k|l) the n×n matrices obtained by selecting the rows

indicated by k and the columns indicated by l from SA and SB, respectively. Similarly, SA(k̃|l̃) and

SB(k̃|l̃) are the (N− n)× (N− n) matrices obtained from SA and SB by selecting the rows k̃ and

the columns l̃. Each of the above arrays is square, so that their determinants can be determined.

Each of these determinants is a number which, in turn, defines an element of another array. For

instance, det|SA(k|l)| is the kl element of an array SA, and det|SB(k|l)| is the kl element of an

array SB. Notice that SA and SB are m×m matrices, where N!/[n!(N− n)!] is the full number

of k and l ordered sets. The m×m arrays S̃A
kl and S̃B

kl are defined from SA(k̃|l̃) and SB(k̃|l̃) in a
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similar way. Using the above definitions, the sector density of domain A, ρA
n , can be written as

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k,l

|Uk〉 〈Ul| S̃B
kl, (12)

with |Uk〉= (n!)−1/2|uk1(x1) · · ·ukn(xn)| and 〈Ul|= (n!)−1/2|ul1(x
′
1) · · ·uln(x

′
n)|.

Important simplifications arise when a one-electron basis |up
i 〉, orthonormal in R3 and orthog-

onal in A and B, is used to construct |Ψ〉. This can be achieved by diagonalizing SA, U†SAU =

diag(si) = s. Then, the basis |up〉 = |u〉U is obviously orthonormal in R3, so that |Ψ〉 does not

change, and orthogonal in A (〈up
i |u

p
j 〉A = δi jsi)), and B (〈up

i |u
p
j 〉B = δi j(1− si)). Moreover, an

orthonormal one-electron basis in A, |φ〉, can also be obtained as |φ〉 = |up〉s−1/2. 1 The |up〉

basis is exactly that proposed by Ponec for SDW’s, and Ponec’s orbitals |up
i 〉, or domain natural

orbitals (DNOs), have been successfully used to extract chemical information, and have been also

interpreted in statistical terms. It can be shown that, in the DNO basis, ρA
n is given by

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k

|φk〉 pkn 〈φk|, where (13)

|φk〉=
1√
n!
|φk1(x1) · · ·φkn(xn)〉, (14)

and pkn = ∏
N
i pi, with pi = si if i∈ k and pi = 1−si if i∈ k̃. Hence, pkn provides the contribution of

|φk〉 to pA(n), which is finally obtained by adding all the possible arrangements of the n electrons

in the the |φ〉 basis: ∑k pkn = pA(n). The normalized sector density ρ̃A
n is also given by eq 13

substituting pkn by p̃kn = pkn/pA(n) = pkn/∑k pkn .

Being |φ〉 an orthonormal basis within the domain A, the 1 and 2RDMs ρ
A,1
n and ρ

A,2
n for each

determinant |φk〉 are easily obtained from Eqs. 10, 13 and 14 by simple application of the Slater

1Since SA is blocked by spin (SA = SA,α ⊕SA,β ), in case of a closed-shell SDW, SA,α = SA,β , and the N/2 orbitals
derived from diagonalizing SA,α and SA,β are the same, which means that, leaving aside the spin part of MSO’s, each α

orbital is equal to an equivalent β orbital, and is orthogonal to all the other β orbitals. However, in open-shell SDW’s
SA,α 6= SA,β and the α and β orbitals are not, in general, orthogonal to each other. The α−β orthogonality is due in
this case to the spin parts of MSO’s.

7



rules:

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
k

pkn ρ
A,1
n,k (x1;x′1) (15)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
k

pkn ρ
A,2
n,k (x1,x2;x′1,x

′
2), where (16)

ρ
A,1
n,k (x1;x′1) =

n

∑
i=1

φki(x1)φ
?
ki
(x′1) and (17)

ρ
A,2
n,k (x1,x2;x′1,x

′
2) =

n

∑
i, j=1

φki(x1)φk j(x2)
[
1− p̂i j

]
φ
?
ki
(x′1)φ

?
k j
(x′2). (18)

Since Tr(ρA,1
n,k )= n and Tr(ρA,2

n,k )= n(n−1) for any k, we have Tr(ρA,1
n )= n× pA(n) and Tr(ρA,2

n )=

n(n− 1)× pA(n), that represent the contributions of sector n to the total number of electrons and

pairs of electrons of domain A, respectively.

3.2 The multi-determinant case

We will assume now that |Ψ〉 is a N−electron MDW expressed in terms of a set of 2 f orthonormal

MSO’s |u〉 = {|u1〉 · · · |u2 f 〉} as |Ψ〉 = ∑
M
r=1Crψr(1,N), where ψr(1,N) = (N!)−1/2 det|ur1 · · ·urN |,

and uri (i = 1 · · ·N) is the subset of N MSO’s that define ψr(1,N). We will collectively label

this subset as r = (r1, · · · ,rN). As in the above section, let us consider now the transformed set

|up〉 = |u〉U , where U is the eigenvector matrix of SA = 〈u|u〉A, i.e. U†SAU = diag(si) = s. Here,

it is also possible to compute |φ〉= |up〉s−1/2, the orthonormal one-electron basis in A. In the |up〉

basis, |Ψ〉 can be written as (see Supplementary Information of Ref. 4)

Ψ(1,N) = ∑
j

Djχj(1,N), (19)

where j ≡ { j1 · · · jN}, Dj = ∑
M
r=1Crdet[Urj ], χj = (N!)−1/2 det|up

j1 · · ·u
p
jN |, and Urj is the (N×N)

matrix obtained from U by selecting the rows and columns denoted by r and j, respectively. The

summation over j in eq 19 runs, in principle, over all possible ordered subsets of N elements

obtained from the first 2 f natural numbers. However, given that all χj’s are built with the same
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number of α and β MSO’s (say, Nα and Nβ ), j1, · · · , jNα
and jNα+1, · · · , jN must be necessarily in

the ranges [1, f ] and [ f +1,2 f ], respectively, reducing considerably the number of terms in eq 19.

Matrix U is unitary but, in general, Urj is not. However, for a closed-shell SDW f = N/2, j and

r can only be j = r = (1,2, · · · ,N), and Urj = U . This is the well-known invariance of a Slater

determinant under an unitary transformation of all of its MSO’s.

As in the SDW case, we only need the 1RDM (ρA,1
n ) and 2RDM (ρA,2

n ) of sector n. Using eq 19

in eq 11, we obtain

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

m ∑
j,k

DjD?
kIm

jk(xi≤m;x′i≤m), where (20)

Im
jk(xi≤m;x′i≤m) = Λ

m
N,n

∫
D

χj(x)χ
?
k(x

′)dxi>m. (21)

The orthogonality in A and B of the |up〉 basis greatly simplifies the computation of the Im
jk inte-

grals. After a lenghty manipulation, that we omit here for brevity, we have

I1
jj(x1;x′1) =

N

∑
i=1

φ ji(x1)φ
?
ji(x

′
1)×nA,1

ji ji. (22)

If χj and χk differ in a single MSO, say up
ji 6= up

ki
we have

I1
jk(x1;x′1) = φ ji(x1)φ

?
ki
(x′1)×nA,1

jiki
(up

ji 6= up
ki
), (23)

and finally, I1
jk = 0 if χj and χk differ in two or more MSO’s. In Eqs. 22 and 23, nA,1

jiki
= (s jiski)

1/2×

p ji(n−1) and p ji(n−1) represents the probability that n−1 electrons lie in A and N−n electrons

lie in B for a hypothetical (N−1)−electron determinant built with all MSO’s of χj except up
ji .

The computation of I2
jk runs parallel to that of I1

jk. We obtain

I2
jj(x1,x2;x′1,x

′
2) =

1
2

Â12Â′12 ∑
i,l

φ ji(x1)φ jl(x2)φ
?
ji(x

′
1)φ

?
jl(x

′
2)nA,2

ji jl ji jl (24)

where nA,2
ji jlkikl

= (s jis jl skiskl)
1/2× p ji jl(n− 2), Â12 = 1− p̂12 is an operator that antisymmetrizes
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with respect to variables in the unstarred MSO’s, Â′12 acts likewise in the starred MSO’s, and

p ji jl(n−2) represents the probability that n−2 electrons lie in A and N−n electrons lie in B for

a hypothetical (N−2)−electron SDW built with all MSO’s of χj except up
ji and up

jl . If χj and χk

differ in a single MSO up
ji 6= up

ki
(or φ ji 6= φki) one has

I2
jk(x1,x2;x′1,x

′
2) = Â12 ∑

l 6=i
φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
jl(x

′
2)nA,2

ji jlki jl
(25)

If χj and χk differ in two MSO’s up
ji 6= up

ki
(or φ ji 6= φki) and up

jl 6= up
kl

(or φ jl 6= φkl ), we obtain

I2
jk(x1,x2;x′1,x

′
2) = Â12φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
kl
(x′2)nA,2

ji jlkikl
. (26)

Finally, I2
jk = 0 if χj and χk differ in three or more MSO’s.

Equations 22-26 can be expressed in the |up〉 one-electron basis instead of the |φ〉 basis simply

removing the (s jiski)
1/2 and (s jis jl skiskl)

1/2 factors from the definition of nA,1
jiki

and nA,1
ji jlkikl

.

Based on all the above expressions, three steps are necessary to compute the 1RDM and 2RDM

of each sector n: (1) Diagonalize SA, obtaining the matrix U , the eigenvectors si, and the trans-

formed MSO’s |up〉 and |φ〉; (2) Transform Ψ(1,N) to the form given by eq 19; (3) For each sector

n and determinant χj , compute the probabilities p ji(n−1) and p ji jl(n−2). Clearly, we can obviate

the sector n = 0, since the 1RDM and 2RDM are zero in this case, ρ
A,1
0 = ρ

A,2
0 = 0. Similarly, only

p ji(n−1) is needed for n = 1, since ρ
A,2
1 = 0. Once these calculations have been performed, ρ

A,1
n

and ρ
A,2
n in the |φ〉 basis can be written as

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
i,k

γ
n
ikφi(x1)φk(x

′
1), (n≥ 1), (27)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
i, j,k,l

Γ
n
i jklφi(x1)φ j(x2)φ

?
k (x

′
1)φ

?
l (x

′
2) (n≥ 2). (28)

Their spinless analogues are obtained after integrating the spin variables. To avoid an overexcess

of definitions, we will continue to maintain, however, the names of γn
ik and Γn

i jkl for the coefficient

that multiplies φi(r1)φk(r
′
1) and φi(r1)φ j(r2)φ

?
k (r1)φ

?
l (r2), respectively, after this integration of
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the spin is carried out. Similarly, we will continue to maintain the γn
ik and Γn

i jkl names when the

|up〉 basis is employed instead of the |φ〉 basis.

The sum ∑
N
n=1 p ji(n−1) is equal to 1 since it gives the probability that the domain A contains

between 0 and N−1 electrons for a hypothetical (N−1)−electron SDW. Similarly, ∑
N
n=2 p ji jl(n−

2) = 1, since this is the probability that A holds between 0 and N − 2 electrons for a (N −

2)−electron SDW. As a consequence, ∑
N
n=1 γn

ik = γik and ∑
N
n=2 γn

i jkl = Γi jkl , where γik and Γi jkl

are the expansion coefficients of the 1RDM and 2RDM of the full system in the |φ〉 basis. The

expressions for the mRDMs (m = 1,2, · · · ) of any sector n are thus formally equal to those of the

full system, and the expansion coefficients of the latter in the |up〉 or |φ〉 basis are the sum of the

coefficients of all its sectors. Actually, Eqs. 22-26, without the nA,1 and nA,2 factors, are the well

known Slater rules Quantum Chemistry.

The γn
ik’s and Γn

i jkl’s of equations 27 and 28 adopt simpler forms for a SDW. Taking into account

that, in that case, only the diagonal term j = k= {1, · · · ,N} appears in eq 20, and Eqs. 21 and 22,

we obtain γn
ik = δik si pi(n−1) and Γn

i jkl = (δik δ jl−δil δ jk)si sl pil(n−2) for a SDW.

3.3 Local spin from an OQS perspective

Within the OQS formalism the local spin of an open region A is given by 〈Ŝ2
A〉 = Tr

(
Ŝ2ρ̂A), and

expressing ρ̂A in terms of its N + 1 sectors, 〈Ŝ2
A〉 = ∑n〈Ŝ2

A,n〉. The sector n = 0 trivially does not

contributes to 〈Ŝ2
A〉, and the sector n = N neither does if |Ψ〉 is a closed-shell wave function. On

the other hand, Ŝ2 for the sector n is given by

Ŝ2 =
n

∑
i, j

ŝ(i)ŝ( j) =
n

∑
i=1

ŝ2(i)+
n

∑
i6= j

ŝ(i)ŝ( j) = Ŝ2
1 + Ŝ2

2, so that (29)

〈Ŝ2
A〉 = 〈Ŝ2

1,A〉+ 〈Ŝ2
2,A〉, with (30)

〈Ŝ2
1,A〉 = ∑

n
〈Ŝ2

1,A,n〉= ∑
n

Tr
(

Ŝ2
1ρ

A,1
n (x;x′)

)
, (31)

〈Ŝ2
2,A〉 = ∑

n
〈Ŝ2

2,A,n〉= ∑
n

Tr
(

Ŝ2
2ρ

A,2
n (x1,x2;x′1,x

′
2)
)
. (32)

11



In the SDW case, from Eqs. 15-18, Eqs. 31-32, and the property 〈φi|φ j〉A = δi j, we find (See

Appendix 1)

〈Ŝ2〉A,n = ∑
k

pkn
[
n/2+M2

k−Sk
]
= ∑

k

pkn 〈Ŝ2〉A,n,k (33)

In eq 33, Mk = (nα−nβ )/2 is the eigenvalue of Ŝz for the determinant |φk〉, with nα +nβ = n, and

Sk = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2, where kα
i and kβ

j are the real parts of MSO’s ki and k j, respectively.2

We should note that the α (or β ) subset of MSO’s is orthonormal in the domain A, but both subsets,

in general, are not orthogonal to each other, i.e. |φk〉 in the general case is a spin-unrestricted Slater

determinant. Particular cases of eq 33 deserve to to commented. (i) A single α or β electron in

A has n/2 = 1
2 , M2

k = 1
4 and Sk = 0, so that 〈Ŝ2〉A,n,k = 3

4 . (ii) An arbitrary |φk〉 with nα = nβ

has Mk = 0, so that 〈Ŝ2〉A,n,k = n/2− Sk. (iii) A restricted Slater determinant made of nα and

nβ < nα spin-restricted MSO’s, where every β orbital is equal to a single α orbital and orthogonal

to all the other α orbitals has Sk = nβ and n/2−Sk = Mk = |Mk|. If the situation is the opposite,

i.e. nβ > nα and every α orbital is equal to a single β orbital and orthogonal to the remaining

β orbitals, one has Sk = nα and n/2− Sk = −Mk = |Mk|. Since M2
k = |Mk|2, we obtain in both

cases 〈Ŝ2
A,n,k〉 = |Mk|(1+ |Mk|). If, in addition, nα = nβ , 〈Ŝ2

A,n,k〉 = 0, that correspondonds to a

restricted closed-shell Slater determinant. (iv) Finally, for a Slater determinant formed from spin-

restricted orbitals where nc α and β orbitals are equal (with nc ≤ nα and nc ≤ nβ ), Sk = nc, and

〈Ŝ2
A,n,k〉= M2

k+nd/2, where nd = nα +nβ −2nc is the number of not-matched orbitals from either

spin.5 For instance, if k = {φ1,φ2,φ3,φ4,φ5, φ̄4, φ̄5,φ6,φ7}, we have nc = 2 and nd = 5. This is

the most general case when α and β φi’s are obtained in the same diagonalization which, in turn,

happens when Ψ is a closed-shell SDW. As pointed out by Davidson and Clark5, nd is the trace of

the effectively unpaired density u(r). When nc = nα or nc = nβ this case reduces to case (iii).

In case that ρ̃
A,1
n and ρ̃

A,2
n had been used instead of ρ

A,1
n and ρ

A,2
n , eq 33 would be the same

2The meaning of Sk is the following. The set of spin-orbitals in k is divided into the α and β subsets, with nα

and nβ MSO’s, respectively. Then, the nα nβ overlaps between the α and β MSO’s (leaving aside their spin parts) are
computed and added to give Sk.
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except that p̃kn must replace pkn . As it is evident from this equation, the expected value of Ŝ2 for

sector n of domain A is a weighted sum of the expected values of this operator for the N!/[n!(N−

n)!] choices of k. Given that pkn = ∏
N
i pi with pi = si if i ∈ k and pi = 1− si if i /∈ k, it is clear that

only k’s with all of its MSO’s partially localized in A will contribute significantly to 〈Ŝ2
A,n〉.

The k sets in eq 33 can be grouped into as many subsets as the number of ways of choosing

nα and nβ such that nα + nβ = n, i.e. 〈Ŝ2
A,n〉 = ∑

′
nα ,nβ ∑

′
k pkn

[
n/2+M2

k−Sk
]
, where the prime

(′) in the first sum means than only terms with nA
α + nA

β
= n are included, and the ′ in the second

that only k’s associated to these nα and nβ have to be considered. All these restricted k’s have

n/2 = (nα +nβ )/2 and Mk = (nα −nβ )/2, so that

〈Ŝ2
A,n〉= ∑

′

nα ,nβ

[
n/2+(nA

α −nA
β
)2/4−Sn

k

]
pA(nα ,nβ ). (34)

where pA(nα ,nβ ) = ∑
′
k pkn is probability of having nα α and nβ β electrons in the domain A,

and we have defined Sn
k = pA(nα ,nβ )−1

∑
′
k pkn Sk. The quantity

[
n/2+(nα −nβ )

2/4−Sn
k

]
can

be understood as 〈Ŝ2
A,nα ,nβ

〉, the local spin of domain A for a spin-resolved sector. The local spin

of sector n is thus the sum of all of its spin-resolved contributions, each weighted with the factor

pA(nα ,nβ ).

In the MDW case, we use Eqs. 31-32 of Appendix 1 with ρ
A,1
n and ρ

A,2
n given by Eqs. 27 and

28, obtaining

〈Ŝ2〉A,n =
3
4 ∑

i
γ

n
ii−

1
4 ∑

i, j

(
Γ

n
i ji j +2Γ

n
i j ji
)
. (35)

In some way, the expresion of 〈Ŝ2〉A,n is formally simpler for MDW’s than for SDW’s. Of course,

the complexity in the first case lies in the calculation of the γn
i j and Γn

i jkl coefficients. In addition,

since we have not derived the 1RDM and 2RDM of spin-splitted sectors of MDW’s (i.e. for given

values of nα and nβ ), an expression for 〈Ŝ2
A,nA

α ,nA
β

〉 is not available yet.

13



4 Appendix 1

In this appendix, we will prove eq 33. For an arbitrary N−electron wave function Ψ with 1RDM

and 2RDM ρ1(1;1′) and ρ2(1,2;1′,2′), the expectation value of Ŝ2 is given by

〈Ŝ2〉 =
3
4

∫
ρ(r)dr− 1

4

∫∫ [
ρ

2(r1,r2;r1,r2)+2ρ
2(r1,r2;r2,r2)

]
dr1dr2. (36)

This equation can be applied as well using ρ
A,1
n,k instead of ρ and ρ

A,2
n,k instead of ρ2. Then, from

Eqs. 15, 17 and 31 we have 〈Ŝ2
1〉A,n =

3
4 ∑k npkn . To obtain the second and third integrals, we will

elliminate for clarity the subscripts n and k and the superscript A from ρ
A,2
n,k . Since ρ

A,2
n,k corresponds

to a SDW, we can write it as

ρ
2(r1,r2;r1,r2) = ρ(r1)ρ(r2)−

1
2

ρ(r1;r2)ρ(r2;r1)−
1
2

ρ
s(r1;r2)ρ

s(r2;r1), (37)

ρ
2(r1,r2;r2,r1) = ρ(r1;r2)ρ(r2;r1)−

1
2

ρ(r1)ρ(r2)−
1
2

ρ
s(r1;r1)ρ

s(r2;r2), (38)

where ρ(r1) ≡ ρ(r1;r1), ρ(r2) ≡ ρ(r2;r2), ρ(r;r′) = ρα(r;r′) + ρβ (r;r′), and ρs(r;r′) =

ρα(r;r′)−ρβ (r;r′), with ρσ (r;r′) = ∑ki∈σ φ?
ki
(r)φki(r

′) (σ = α,β ), and nα +nβ = n. Since the

φi spin-orbitals are orthonormal in A, the integration of ρ2(r1,r2;r1,r2) is analogous to that of a

standard n−electron 2RDM in R3, i.e.

∫
A

∫
A

ρ
2(r1,r2;r1,r2)dr1dr2 = n(n−1). (39)

The integration of ρ2(r1,r2;r2,r1) is as follows. First,
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = αα +

ββ +αβ + βα , where σσ ′ =
∫

A
∫

A ρσ (r1;r2)ρ
σ ′(r2;r1) dr1dr2. The contribution αα can be

written as ∑ki∈α ∑k j∈α |〈φki|φk j〉A|2. Since φki and φk j are α MOs, they come from the same

diagonalization and are orthogonal if ki 6= k j. Then, αα = nα . Similarly, ββ = nβ . The αβ

contribution is given by αβ = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2 = |Sαβ

i j |2 = Sk, where we have used an

abbreviated notation for the overlap integrals. In a closed-shell molecule, the α and β φi’s are

14



equal and each Sαβ

i j is simply 0 (kα
i 6= kβ

k ) or 1 (kα
i = kβ

k ), and Sk = nkp , where nkp is the number

φi’s in k that appear simultaneously in the α and β sets. For instance, for the five-components

k vector with nα = 3 and nβ = 2 formed with the α MOs φ1, φ3, and φ4, and the β MOs φ1

and φ4, we will have nkp = 2. The above situation also happens in an open-shell molecule if

we decide to obtain the full set of α + β MOs from the same diagonalization. However, in

the most general case, Sαβ

i j 6= 0. The βα contribution is also given by βα = Sk. In summary,

we have
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = n + 2Sk. From
∫

A ρ(r)dr = n, we trivially obtain

−1
2
∫

A
∫

A ρ(r1)ρ(r2) dr1dr2 = −1
2n2. Finally, from ρs(r;r′) = ρα(r;r′)− ρβ (r;r′) we have

−1
2
∫

A
∫

A ρs(r1;r1)ρ
s(r2;r2) dr1dr2 =−1

2(n
α −nβ )2 =−2M2

k. Adding these three contributions

∫
A

∫
A

ρ
A,2
n,k (r1,r2;r2,r1)dr1dr2 =−

1
2

n(n−2)+2 Sk−2M2
k. (40)

Finally, adding the 〈Ŝ2
1〉A,n value, −1

4 of eq 39, and −1
2 of eq 40 we obtain eq 33.
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