Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Electronic Supplementary Information

Theoretical and Experimental Insights into the Effects of Halogen Composition on the Thermal-Decomposition Details, as well as the Fire-Suppressing Mechanism and Performance of $CF_3CX=CH_2$ (X = F, Cl, Br)

Suting Zhou, Qi Yang, Haijun Zhang,* Xiaomeng Zhou*

Center for Aircraft Fire and Emergency, Department of Safety Engineering, Civil Aviation University of China, Tianjin 300300, P. R. China.

To whom correspondence should be addressed. Email: <u>hjzhang_ahu@163.com</u> (HZ) <u>zhouxm@nankai.edu.cn</u> (XZ)

Figure S1. The diagram of experimental equipment for thermal decomposition.

Figure S2. The temperature of flame root for (a) propane and (b) methane flame at different concentration of extinguishant.

Figure S3. The diagram of experimental device for cup-burner measurement.

Figure S4. The mass spectra of (a) $CF_3C\equiv CH$, (b) CF_3Br , (c) $C_4H_2F_6$ and (d) $C_3H_2F_3Br$.

Figure S5. The mass spectra of (a) CF_3H , (b) $C_2H_2F_2$, (c) C_2H_3F and (d) $C_4H_2F_6$.

Figure S6. Geometric structures of main products, transition states and intermediate products in the optimal decomposition path of HFO-1234yf.

TSc9

IMc6

Pc3-2

Figure S7. Geometric structures of main products, transition states and intermediate products in the optimal decomposition path of HCFO-1233xf and 2-BTP.

Figure S8. The schematic of generation of Cl_{\cdot} , Br_{\cdot} and CF_{3} .

Figure S9. Methane-air flame appearance at different concentrations of (a) HFO-1234YF (b) HCFO-1233XF (c) 2-BTP.

Figure S10. The potential energy diagram for the reaction pathways of first-step pyrolysis of HFO-1234yf, HCFO-1233xf and 2-BTP, calculated by using the M06-2X functional.

Figure S11. The potential energy diagram for the decomposition of HCFO-1233xf, calculated by using the (a) B3LYP, (b) wB97XD and (c) M06-2X functionals.

Figure S12. Pathways of reactions between the H•, OH• and O: free radicals and investigated HFO-1234YF, HCFO-1233XF and 2-BTP agents. The energy barrier is in the unit of kJ/mol.

Figure S13. Reaction pathways of thermal decomposition products of HCFO-1233XF and HFO-1234YF in the flame with free radicals.

Parameters	GC-MS		
Model number	Thermal Fisher Trace 1310		
Chromatographic column	DBVRX, 30.0m, 0.25mm, 1.4µm		
Flow rate of carrier gas	1.249 ml/min		
Injection mode	15µL, gas, splitting mode		
Split ratio	1:80		
Injector temperature	280°C		
Ion source temperature	240°C		
Ionization methods	Electron bombardment		
Ionizing energy	70eV		
Scanned area m/z 20-300			

Table S1. Setting parameters for GC-MS

Table S2. BDEs of different bonds in HFO-1234yf molecule calculated at UB3LYP/6-311++G (d, p) level. The C-F bond at the middle carbon was highlighted by bold font. The S(S+1) value of •CFCF₃ and •CH₂ radicals equals to 2, and the S(S+1) value for other radicals is 0.75. The deviation between S(S+1) and \langle S²> locates at an acceptable range ($\Delta < 10\%$).

Bonds	Molecular	Ee + ZPE	~ C 2>	BDEs ^a	Bond distance
	Fragment	(Hartree)	<3->	(kJ mol ⁻¹)	(Å)
C-C	•CF ₃	-337.658811	0.7517	409 700	1 500
	•CF=CH ₂	-177.165581	0.7599	408.722	1.309
	•CFCF ₃	-475.559668	2.0041	712 505	1.320
L–L	•CH ₂	-39.148985	2.0053	/12.393	
	۰F	-99.76058	0.7513	442 142	1 240
	•CF ₂ =CF=CH ₂	-415.050702	0.7759	443.142	1.349
	•F	-99.76058	0.7513	442 142	1.347
C-F	•CF ₂ =CF=CH ₂	-415.050702	0.7759	443.142	
	•F	-99.76058	0.7513	442 127	1.345
	•CF ₂ =CF=CH ₂	-415.050704	0.7759	443.137	
СБ	•F	-99.76058	0.7513	492 000	1.346
C-F	•CF ₃ C=CH ₂	-415.035521	0.7601	403.000	
С-Н	•H	-0.502257	0.75	470 228	1.080
	•CH=CFCF ₃	-514.298705	0.7597	470.238	
	•H	-0.502257	0.75	460 260	1 092
	•CH=CFCF ₃	-514.299074	0.7601	409.209	1.082
HFO-1234yf		-514.980066			

Table S3. BDEs of different bonds in HCFO-1233xf molecule calculated at UB3LYP/6-311++G (d, p) level. The C-Cl bond at the middle carbon was highlighted by bold font. The S(S+1) value of •CClCF₃ and •CH₂ radicals equals to 2, and the S(S+1) value for other radicals is 0.75. The deviation between S(S+1) and \langle S²> locates at an acceptable range ($\Delta < 10\%$).

Donda	Molecular	Ee + ZPE	~ C 2>	BDEs ^a	Bond distance
Donus	Fragment	(Hartree)	<3->	(kJ mol ⁻¹)	(Å)
C-C	•CF ₃	-337.658811	0.7517	201 7(0	1.512
	•CCl=CH ₂	-537.528151	0.7599	391.709	
<u> </u>	•CClCF ₃	-835.928239	2.0063	(70.99)	1.325
C=C ·	•CH ₂	-39.148985	2.0053	6/9.880	
	۰F	-99.76058	0.7513	440 406	1.040
	• CF_2 =CCl=CH ₂	-775.407823	0.7774	440.496	1.348
C F	•F	-99.76058	0.7513	440 400	1.348
C-F	• CF_2 = CCl = CH_2	-775.407823	0.7774	440.496	
	۰F	-99.76058	0.7513	176 780	1.348
	• CF_2 =CCl=CH ₂	-775.394003	0.7527	4/0./80	
	•Cl	-460.166882	0.7518	251 220	1.745
C-CI	•CF ₃ C=CH ₂	-415.035521	0.7601	351.229	
	•H	-0.502257	0.75	457 165	1.082
С-Н	•CH=CClCF ₃	-874.659797	0.7611	437.103	
	•H	-0.502257	0.75	460.089	1.082
	•CH=CClCF ₃	-874.658341	0.7611	400.988	
HCFO-1233xf		-875.336179			

Table S4. BDEs of different bonds in 2-BTP molecule calculated at UB3LYP/6-311++G (d, p) level. The C-Br bond at the middle carbon was highlighted by bold font. The S(S+1) value of •CBrCF₃ and •CH₂ radicals equals to 2, and the S(S+1) value for other radicals is 0.75. The deviation between S(S+1) and $\langle S^2 \rangle$ locates at an acceptable range ($\Delta < 10\%$).

Bonds	Molecular	Ee + ZPE	<02>	BDEs ^a	Bond distance
	Fragment	(Hartree)	<52>	(kJ mol ⁻¹)	(Å)
C-C -	•CF ₃	-337.658811	0.7517	297 200	1.511
	•CBr=CH ₂	-2651.450612	0.76	387.309	
C-C	•CBrCF ₃	-2949.851418	2.0074	(72 525	1.225
L-L	•CH ₂	-39.148985	2.0053	0/3.333	1.323
	۰F	-99.76058	0.7513	428.060	1.348
	•CF ₂ =CBr=CH ₂	-2889.329168	0.7772	438.900	
C-F	۰F	-99.76058	0.7513	428.060	1.347
	•CF ₂ =CBr=CH ₂	-2889.329168	0.7772	438.900	
	۰F	-99.76058	0.7513	472 (70)	1.350
	•CF ₂ =CBr=CH ₂	-2889.316325	-0.7532	4/2.0/9	
C-Br -	•Br	-2574.105777	0.7515	202 (15	1.906
	•CF ₃ C=CH ₂	-415.035521	0.7601	303.015	
	•H	-0.502257	0.75	155 511	1.081
С-Н -	•CH=CBrCF ₃	-2988.581186	0.7612	433.314	
	•H	-0.502257	0.75	440 207	1.083
	•CH=CBrCF ₃	-2988.583588	0.7619	449.207	
2-BTP		-2989.256939			

Computational Details for the BDEs

The bond dissociation energies (BDEs) of molecules, which is energy consumed or released by breaking or forming a bond in a molecule, were calculated by using UB3LYP method. For instance, The BDE(C-C) is defined according the homolytic reaction (CF₃CCl=CH₂ \rightarrow •CF₃ + •CCl=CH₂) with the equation:

 $BDE(C-C) = [E_e(\bullet CF_3) + E_{ZPE}(\bullet CF_3)] + [E_e(\bullet CCl=CH_2) + E_{ZPE}(\bullet CCl=CH_2)] - [E_e(CF_3CCl=CH_2) + E_{ZPE}(CF_3CCl=CH_2)].$

where E_e and E_{ZPE} denote the electronic energy and zero-point energy for these fragments/molecules of •CF₃, •CCl=CH₂ and CF₃CCl=CH₂. As recommended by the previous study, the UB3LYP method can give reliable results and the spin contamination $\langle S^2 \rangle$ locates at an acceptable range ($\langle 10\% \rangle$), as listed in Table S2-S4.

Products	Preferable pathways		
CF ₃ H	A1': HFO-1234yf \rightarrow IMa1 \rightarrow TSa6 \rightarrow IMa5 \rightarrow IMa14 \rightarrow TSa9		
	\rightarrow IMa15 \rightarrow Pa1		
CFH=CH ₂	A2 : HFO-1234yf \rightarrow IMa1 \rightarrow TSa3 \rightarrow IMa2 \rightarrow Pa2		
CF ₂ =CH ₂	A3': HFO-1234yf \rightarrow IMa1 \rightarrow TSa6 \rightarrow IMa5 \rightarrow TSa17		
	\rightarrow IMa12 \rightarrow TSa18 \rightarrow IMa13 \rightarrow Pa3		
CF ₃ CH=CHCF ₃ (E)	A4' : HFO-1234yf \rightarrow IMa1 \rightarrow TSa6 \rightarrow IMa5 \rightarrow IMa14 \rightarrow		
	$TSa19 \rightarrow IMa15 \rightarrow TSa20 \rightarrow IMa16 \rightarrow TSa21 \rightarrow Pa4-1$		
CF ₃ CH=CHCF ₃ (Z)	A4'' : HFO-1234yf \rightarrow IMa1 \rightarrow TSa4 \rightarrow IMa3 \rightarrow IMa6 \rightarrow		
	$TSa11 \rightarrow IMa7 \rightarrow Pa4-2$		

Table S5. The Decomposition products and their preferable pathways of HFO-1234yf

Substances	Products	Preferable pathways		
HCFO-	CE C-CU	B1 : HCFO-1233xf \rightarrow IMb1 \rightarrow TSb3 \rightarrow IMb3 \rightarrow TSb7		
1233xf	Сг3С=СП	$\rightarrow Pb1 + Cl \bullet$		
	CF₃C≡CH	C1: 2-BTP \rightarrow IMc1 \rightarrow TSc3 \rightarrow IMc2 \rightarrow TSc8 \rightarrow Pc1		
		+ Br•		
	CF ₃ Br	$CF_3 \bullet + Br \bullet \rightarrow CF_3Br$		
	CF ₃ CH=CHCF ₃ (E)	C3 : 2-BTP \rightarrow IMc1 \rightarrow TSc3 \rightarrow IMc2 \rightarrow TSc9 \rightarrow		
		$IMc5 \rightarrow IMc6 \rightarrow TSc11 \rightarrow Pc3-1 + Br$ •		
		$C3': 2\text{-BTP} \rightarrow IMc1 \rightarrow TSc3 \rightarrow IMc2 \rightarrow TSc8 \rightarrow Pc1$		
		\rightarrow TSc20 \rightarrow IMc11 \rightarrow TSc21 \rightarrow IMc12 \rightarrow Pc3-1		
2 - D1P	CF ₃ CH=CHCF ₃ (Z)	C3'' : 2-BTP \rightarrow IMc1 \rightarrow TSc3 \rightarrow IMc2 \rightarrow TSc8 \rightarrow		
		$Pc1 \rightarrow TSc20 \rightarrow IMc11 \rightarrow Pc3-2$		
	(CF ₃) ₂ C=CH ₂	C3 ''': 2-BTP \rightarrow IMc1 \rightarrow TSc4 \rightarrow IMc3 \rightarrow TSc12 \rightarrow		
		$IMc7 \rightarrow Pc3-3$		
	CF ₃ CH=CHBr(Z)	C4: 2-BTP \rightarrow IMc1 \rightarrow TSc4 \rightarrow IMc3 \rightarrow IMc8 \rightarrow		
		$\mathrm{TSc14} \rightarrow \mathrm{IMc9} \rightarrow \mathrm{TSc15} \rightarrow \mathrm{IMc10} \rightarrow \mathrm{TSc16} \rightarrow$		
		$Pc4 + CF_3 \bullet$		

Table S6. The decomposition products and their preferable pathways of HCFO-1233xf and 2-BTP

Table S7. Energy barriers for the transition states of first-step pyrolysis reactions of $CF_3CX=CH_2$ (X = F, Cl, Br) substances. The TS states of BS-a, BS-b and BS-c represent the broken-symmetry states occurred in the generation of triplet states of IMa1, IMb1 and IMc1. All the energy barriers are in the unit of kJ/mol.

molecules	TS	B3LY	PBE0/cc-	PBE0/6-	M06-2X/6-
	states	Р	pVDZ	311 + G(d,p)	311G(d)
HFO- 1234yf	BS-a	364.7	242.1	239.1	263.3
	TSa1	311.5	323.1	320.2	355.1
	TSa2	509.5	513.3	526.1	532.8
HCFO-	BS-b	346.0	224.4	223.6	248.0
1233xf	TSb1	310.0	320.3	324.0	347.0
2-BTP	BS-c	336.7	220.5	219.5	245.0
	TSc1	296.6	311.1	312.7	334.0
	TSc2	498.7	514.0	516.3	527.4
	TSc7	409.1	430.0	425.8	436.4