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1 Experimental spectroscopic data

DMAC, TRZ and DMAC-TRZ were acquired from Merck, and used without further purifica-

tion. Spectroscopic data were collected in solution using HPLC-grade solvents from Merck.

Absorption spectra were recordered with a Perkin Elmer Lambda 650 spectrophotometer.

Steady-state and time-resolved luminescence spectra (including anisotropy) were recordered
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on dilute solutions (absorbance lower than 0.1) with a FLS1000 Edinburgh Fluorometer

equipped with a gated PMT detector. Low-temperature measurements were collected on

glassy matrices of 2MeTHF at 77K (the solvent was stored over molecular sieves for one

night, and filtered before use), that were fastly cooled using an Oxford Instrument Optis-

tatDN cryostat.

Table S1: Absorption maxima and molar extinction coefficient of DMAC-TRZ in different
solvents

Compound Solvent λabs[nm] Molar Extinction
Coefficient [L mol−1cm−1]

DMAC-TRZ Toluene 382 1990
Chloroform 382 2180
DMSO 385 2250

Figure S1: Steady state absorption (left panel) and emission spectra (right panel) of DMAC-
TRZ in cyclohexane, toluene, chloroform and DMSO.
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Figure S2: Fluorescence intensity (excitation 375 nm, detection at the maximum of emission
for each solvent) vs time for DMAC-TRZ in different solvents.

Figure S3: Time resolved emission spectra of DMAC-TRZ in chloroform.
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Figure S4: Absorption and fluorescence excitation spectra of DMAC-TRZ in different sol-
vents.
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Figure S5: Fluorescence intensity (excitation: 405nm, emission 485nm) collected for DMAC-
TRZ in 2MeTHF at 77K on different time ranges.

Figure S6: Time resolved emission spectra of DMAC-TRZ in 2-Me-THF at 77K in different
time ranges.
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2 Computational details

We used Gaussian 16 B.10S1 for the DFT optimization of DMAC-TRZ ground state (B3LYP/6-

31G(d)), then excited states are calulated in TD-DFT (Tamm-Dancoff approximation) using

different functionals: B3LYP,S2 CAM-B3LYP,S3 M06-2X functionalsS4 and LC-ω∗PBE.S5

Spin-orbit coupling (SOC) in DMAC-TRZ is calculated using M06-2X/6-31G(d). All cal-

culations are performed under TD-DFT within Tamm-Dancoff approximation. The default

Breit-Pauli Hamiltonian is adopted to calculate SOC between TD-DFT states in Orca 4.1

package.S6,S7 AvogadroS8 was used as visualization tool.

2.1 Long range ω-tuned functional

TD-DFT calculations based on different functionals lead to wildly different results for the

excitation spectrum of TADF dyes, particularly with reference to the ∆EST value and,

more generally, in terms of relative order of CT and local excited (LE) states.S9 Range-

separated exchange functionals were suggested to solve the issue. In this approch, the range-

separated parameter (ω) is optimally tuned to to get the exact exchange (eX) according to

the interelectron distance, r12:S9

1

r12
=

1− [α + β erf(ω · r12)]
r12

+
α + β erf(ω · r12)

r12
= SR + LR (1)

where erf(x) = 2√
x

∫ x
0
exp(−t2)dt and ω is range-tuning parameter.

The first term is the short-range (SR) component which is evaluated by DFT derived

from local-density or generalized-gradient approximations. The second term is the long-

range (LR) component which is evaluated by Hatree-Fock (HF). The α parameter quantifies

the amount of eX in the SR limit, and α + β quantifies the amount of eX in the LR limit.

The range-separation parameter ω defines the inverse distance at which exchange terms

switch from DFT to HF. For any functional, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ α + β ≤ 1.

We use CAM-B3LYP (α = 0.19, α + β = 0.65), M06-2X (56% eX), B3LYP (20% eX) and
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LC-ωPBE (α = 0, α + β = 1) for comparison.S9,S10 By deafult LC-ωPBE has a ω value of

0.4 Bohr−1.S11,S12 Now we tune this parameter to get the optimal ω (ω∗) using LC-ωPBE

functional.

Baer et al. proposed a nonempirical method to get optimal ω by enforcing Koopman’s

theorem,S13 stating that the negative HOMO energy, −εH(N), of the N-electron system

should be equal to the molecular vertical ionization potential, IP (N).

− εωH(N) = IP ω(N) (2)

Since, TADF molecules are donor-acceptor systems, it is useful to focus on ionization

potential (related to donor component) as well as on electron affinity (related to acceptor

component). The vertical electron affinity of N-electron system, EA(N) should be equal to

the negative energy of HOMO energy of anion system, −εH(N + 1).

− εωH(N + 1) = EAω(N) (3)

In optimal range-separated method, the goal is to minimize J(ω) defined as:

J(ω) = |εωH(N) + IP ω(N)|+ |εωH(N + 1) + EAω(N)| (4)

We have performed our study using LC-ωPBE and found 19.5% as optimal ω for the ground

state equlibrium structure. We find the optimal ω gives qualitatively similar result with

M06-2X compared to CAM-B3LYP and B3LYP for relative position among LE and CT

states.

Optimal ω is geometry dependent.S14 The dihedral angle of ground state equilibrium

structure is 90◦. We calculated the optimal ω for dihedral angles of 75◦, 60◦, 45◦ and compare

with other functionals. Optimal ω values are listed in Table S2 and plots for transition energy

calculated for different dihedral angles and functionals are shown in Fig. S7.
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Table S2: Optimal ω values estimated for different geometries

Dihedral angle ω
90◦ 0.195
75◦ 0.195
60◦ 0.190
45◦ 0.185

Figure S7: Excitation energies of the four lowest excited states calculated with different
functionals and for different θ values.
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Figure S8: Natural transition orbitals calculated for T1 state for different θ values.
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Figure S9: Excitation energies of the lowest singlet and three-lowest triplet states in gas phase
and methylcyclohexane using different formalisms for solvent response: linear response (LR),
corrected linear response (CLR) and state specific correction (SSC).S15–S17

Figure S10: Left panel: a sketch of the molecule under an applied uniform electric field.
Right panel: transition energies of the lowest singlet and triplet states as a function of an
external electric field applied along the CT direction. Symbols refer to TD-DFT results,
continuous lines show ESM energies for the CT states.
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3 Model details

3.1 Three-state model for DMAC-TRZ

The three-state Hamiltonian reads (basis: |N〉, |Z〉, |T 〉):

Ĥ =


0 −τ0| sin δ| Vsoc

−τ0| sin δ| 2z 0

Vsoc 0 2z

+ a2δ
2 + a4δ

4 (5)

where all symbols are defined in the main text.

Figure S11: Energy of the ground and lowest excited singlet and triplet states calculated as
a funcion of θ in TD-DFT (symbols) and three-state ESM (lines).
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3.2 θ dependence of τ

System properties in ESMs are dependent on the ionicity ρ that is defined by the model

parameters as:

ρ =
1

2

(
1− z√

z2 + τ 2

)
(6)

In particular the transition dipole moment, µCT is given by:

µCT = µ0

√
ρ(1− ρ) (7)

where µ0 is the dipole moment associated to the zwitterionic state. The CT transition energy,

h̄ωCT

h̄ωCT =
τ(θ)√
ρ(1− ρ)

(8)

The product µCT h̄ωCT has the same θ dependence as τ(θ):

µCT h̄ωCT = µ0τ(θ) (9)

The dependence of τ(θ) is obtained fitting the values of µCT h̄ωCT predicted using M06-

2X/6-31G(d) calculations for different values of θ with the function f(θ) = A| cos(θ)| as in

Fig. S12.

3.3 The role of the effective local triplet state

As stated in the main text, the choice of the effective local triplet (3LE) state coupled to

the CT triplet is somewhat arbitrary as it mimics the effects of several local triplet states.

However, since we are interested in the properties of T1, the lowest triplet, adopting different

choices for the effective state has marginal effects on molecular and spectroscopic properties

we are interested in. Specifically, Fig. S13 show the θ-dependence of the energies of the

relevant states, of the singlet-triplet gap and spin-orbit coupling and of the weight of the
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Figure S12: TD-DFT results for µCT h̄ωCT (symbols) fitted with the function A| cos θ| (line)
with A as fitting parameter.

CT state in T1 obtained adopting three different choices for the parametrization of the local

triplet state, as reported in Table S3. The left panels in the Figure showing results for Model

1 coincide with data reported in the main text (Fig. 3). Middle panels refer to Model 2,

where the energy and the coupling strength of the effective local triplet state are increased.

Finally the rightmost column show results obtained for Model 3 that considers two coupled

local triplets.

3.4 Determination of εv

The vibrational relaxation energy, εv, is estimated through DFT energy calculations on the

isolated donor (D) and acceptor (A) and the respective ionized species, D+ and A-:

εv =
(
E

(D)

D+ + E
(A)

A−

)
−
(
E

(D+)

D+ + E
(A−)

A−

)

where E(j)
i is the energy of i in in the equilibrium structure of j (See Table S4). Calculations

involving the open-shell systems D+ and A- were used unrestricted M06-2X/6-31G(d).
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Figure S13: From top to bottom: PES, singlet triplet energy gap and spin-orbit coupling
and the weight of the CT triplet in T1 state. Left: Model 1 parametrization (see Table S3);
middle: model 2; right: model 3.

Table S3: Different parametrizations of the model prosposed in the main text. Model 1 is
the same parametrization as in main text Table 2. Model 2 is a different parametrization,
obtained for a different energy of |L〉. Model 3 accounts for an additional local state |L′〉 that
is coupled through the following matrix elements: 〈L′| Ĥ |T 〉 = −β′0| sin(δ)| and 〈L′| Ĥ |Z〉 =
W ′
soc.

Model 1 Model 2 Model 3

z (eV) 1.72 1.72 1.72
τ0 (eV) 0.75 0.75 0.75
k (eV) 1.96 2.20 1.96
β0 (eV) 0.85 1.20 0.75
k′ (eV) - - 2.20
β′0 (eV) - - 0.60
a2 (eV) 6.00·10−5 6.00·10−5 6.00·10−5

a4 (eV) 1.43·10−7 1.43·10−7 1.43·10−7

Vsoc (cm-1) 3.10 3.10 3.10
Wsoc (cm-1) 1.40 1.40 1.00
W ′
soc (cm-1) - - 1.00
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Table S4: SCF energies of D+ and A- used to estimate εv.

SCF Energy (a.u.)

E
(D)

D+ -634.873448021
E

(D+)

D+ -634.875775452
E

(A)

A− -973.174499157
E

(A−)

A− -973.178453857

3.5 Modelling the solvent response

The total (solute+solvent) Hamiltonian is Ĥtot = Ĥsys+Ĥsol. In ESMs we take into account

electrostatic interactions between the solute treated as a point dipole, and the solvent treated

as a dielectric continuum medium that hosts the solute in a cavity of radius a0. The solvent

responds to the solute generating an electric field, also called reaction field, Fr, proportional

to the electric dipole moment of the solute.

Two regimes must be discriminated for the solvent response: (i) the response associ-

ated with electronic degrees of freedom is very fast and can be treated in the antiadiabatic

approximation; (ii) the response associated with orientational degrees of freedom of polar

solvent molecules is very slow and can be treated in the adiabatic approximation. So, the

reaction field splits in two terms: Fr = rel〈µ〉+ror〈µ〉 where rel and ror are dependent on the

cavity radius, the refractive index η =
√
εopt and the static dielectric constant (εst). Specif-

ically, rel = 2
4πε0a30

f(εopt) and ror = 2
4πε0a30

(f(εst) − f(εopt)) where f(ε) = ε−1
2ε+1

. We consider

the solvent as an elastic medium so that a quadratic potential energy is associated to the

two components of the reaction field, the relevant force constant being fixed to 1/(2ror/el)

enforcing the proportionality between the reaction field and the molecular dipole moment at

the equilibrium.

Adopting the adiabatic approximation to polar solvation and the antiadiabatic approxi-

mation for th electronic solvation, the Hamiltonian for the solvated molecule reads: Ĥtot =

Ĥsys− rel
2
µ̂2−Forµ̂+ 1

2ror
F 2
or, that, for the specific essential state model adopted for DMAC-
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TRZ reduces to the Hamiltonian in Eq. 3 main text. The required dielectric parameters

for the solvents are taken from the literature (except for 2MeTHF at 77K) and are listed in

Table S5. Literature data for εst and εopt of glassy 2MeTHF at 77 K are not available. Since

the refractive index of organic solvents increases linearly as the temperature decreases,,S18

we set ε2MeTHF
opt (77K) = 2.016. As for the static dielectric constant, the effective polarity

of 2MeTHF increases as the temperature decreases and, for glassy 2MeTHF at 77K it is

comparable to that of liquid EtOH or DMF,S19 so we set ε2MeTHF
st (77K) = 30.5.

Table S5: Solvent dielectric properties at ambient conditions.

solvent εopt εst

Cyclohexane 2.03 2.03
Toluene 2.24 2.38
Chloroform 2.09 4.81
2MeTHF 1.98 6.97
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Figure S14: Normalized absorption and fluorescence spectra (continuous and dashed lines,
respectively) of DMAC-TRZ in different solvents. Top panel: experimental data as in Fig.
1, main text. Middle panel: calculated spectra with εor estimated as described in the
main text (same data as in Fig. 4, main text). Bottom panel: calculated spectra (298
K) adjusting εor as free fitting parameter: εor(Cyclohexane)=0.10 eV; εor(Toluene)=0.22 eV;
εor(Cholorform)=0.40 eV. The HWHM associated to each transition is Γ = 0.03 eV.
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Figure S15: Top: Normalized absorption and fluorescence spectra (continuous and dashed
lines, respectively) of DMAC-TRZ in different solvents. Bottom: emission and excitation
spectra of DMAC-TRZ in glassy 2MeTHF. The columns show spectra calculated for model
parameters listed in Table S3 (from left to right: model 1 to 3).
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Figure S16: Emission and excitation spectra of DMAC-TRZ in frozen 2MeTHF. Top panel:
experimental spectra as in Fig. 1, main text. Middle panel: calculated spectra as in Fig.
4(b) main text. Bottom panel: the same as in the middle panel, but with phosphorescence
spectra calculated only accounting for the contribution from the CT state.
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Figure S17: Calculated emission and excitation spectra of DMAC-TRZ in matrix with the
same dielectric properties of 2-MeTHF at RT. Continuous lines: fluorescence and fluorescence
excitation spectra. Dashed lines: phosphorescence and phosphorescence excitation spectra.
Excitation spectra are computed setting the excitation wavelength as the wavelength of the
maximum of the respective emission (fluroescence or phosphorescence) spectra.
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Figure S18: Calculated emission and excitation spectra of DMAC-TRZ in a η = 1 ma-
trix (top) and in a η = 2 matrix (bottom) at 298 K. Continuous lines: fluorescence and
fluorescence excitation spectra. Dashed lines: phosphorescence and phosphorescence exci-
tation spectra. Excitation spectra are computed setting the excitation wavelength as the
wavelength of the maximum of the respective emission (fluroescence or phosphorescence)
spectra.
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