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The energy-strain method

In this section we reproduce the elastic constants results presented by Kronik et al. for the FF crystal. [1]

For that we have employed the PBE functional with the iterative Tkatchenko-Scheffler dispersion corrections

(TS-vdW), an energy-cuttoff of 1600 eV, a KPOINT mesh of 1x1x4 and the energy-strain methodology. The

obtained lattice parameters and elastic constants for FF are presented in Table 1. We also listed the results

reported by Kronik et al. As can be seen the previously reported results and the here obtained are in very good

agreement.

Table 1: Computed lattice parameters (in Å), volume (in Å3), and the lattice parameter ratio comparison for
FF dipeptide optimizaion with PBE-TS-vdW. As well as the elastic constants obtained with the energy-strain
method.

|~a| |~c| V0 |~c|/|~a|
This work 23.94 5.39 2676.95 0.225

Previous work [1] 23.89 5.38 2659.16 0.225

Elastic Constants (in GPa), Poisson Ratio, and Young’s Moduli (in GPa).
C11 C33 C12 C13 ν12 E1 E3

This work 17.47 25.43 11.10 11.00 0.50 9.55 16.95
Previous work [1] 17.56 24.05 11.91 11.00 0.54 8.75 15.85

The curve fitting plots used for obtaining the results presented in Table 1 are presented in Figure 1. In each plot

it is indicate the combination of elastic constants associated to the energy response upon straining the system.

In these plots can be observed that for all the applied strains the resulting energy change is marginal and lies

in the precision range that DFT plane wave codes can predict, in particular, the plot associated to the C11-C12

in which the maximum energy change amounts to 0.01 eV (0.23 kcal/mol) revealing that the potential energy

surface for this particular system is fluxional. We consider that this low energy change makes the energy-strain

methodology highly prone to convergence issues, as it has been thoroughly investigated by Caro et al. [2]
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Figure 1: Energy curves, as a function of strain, computed with PBE and the iterative TS-vdW correction.
Solid lines represent a parabolic fit and the elastic constant combination extracted from the curvature of each
fit is denoted on each panel.

The stress-strain method

In this section detailed intermediate results are presented for the FF dipeptide crystal obtained with DFT. These

DFT calculations are performed using the PBE functional with Tkatchenko-Scheffler dispersion corrections (TS-

vdW), an energy-cuttoff of 1600 eV, a KPOINT mesh of 1x1x4, and the stress-strain methodology. Starting

from a fully relaxed dipeptide crystal with a stress matrix converged to 10−2 kB:

s0 =

 0.07234797 0.00266576 −0.00333445

0.00266576 0.05783309 −0.00260705

−0.00333445 −0.00260707 0.05554635


we have computed the elastic matrix elements, Cij , from stress-strain relations that allow us to extract individual

elastic constants separately using single linear least-squares-fit to stress-strain relations. To provoke changes

in the stress matrix we follow the methodology described by de Jong et. al. [3] in which it is employed a
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Green-Lagrange strain tensor, E, defined as:

E =
1

2
(δT δ − I) (1)

where δ denotes the applied distortion matrix. The set of distorted structures is obtained using the open-source

materials analysis code pymatgen [4] with distortion cell values α = {−0.01,−0.0075− 0.005,+0.005,+0.0075,+0.01}
for shear-modes and non shear-modes. Atom positions inside the distorted cell are optimized for obtaining the

corresponding stress tensor. Three regression sets, ε1 = {−0.01,−0.005,+0.005,+0.01}, ε2 = {−0.005,+0.005}
and ε3 = {−0.0075,−0.005,+0.005,+0.0075} are employed to check if the resulting bulk moduli are in agreement

within 15%, as recommended, [3] in order to determine whether the range of strains considered is appropriate

for deriving the elastic constant tensor using a linear stress-strain relationship. The compliance tensor, s, is

obtained by inverting the elastic matrix C. Young’s moduli are then calculated as, Ei = 1/sii, and the Poisson’s

ratios with the relation νij = −sij/sii. The linear least-squares-fit to stress-strain relations is carried out using

Mathematica notebook. The following intermediate results are obtained for computing the C11, C12, C13 , C14,

C15 and C16 elastic constants if the ε1 regression set is applied to strain the crystal with the next distortion

matrix:

δ =

1 + ε1 0 0

0 1 0

0 0 1


the corresponding calculated stress matrices are (in kB):

sε1=−0.01 =

 3.52767085 0.00295768 −0.00291534

0.00295768 1.53984823 0.00020327

−0.00291534 0.00020327 1.55326728


,

sε1=−0.005 =

 2.11368108 0.00853872 −0.00271436

0.00853872 0.91087359 0.00027395

−0.00271436 0.00027395 0.87185023


,

sε1=+0.005 =

−1.32651159 0.00801234 −0.00249455

0.00801234 −0.32350397 0.00014273

−0.00249455 0.00014273 −0.42458617


and

sε1=+0.01 =

−2.24861723 0.00688584 −0.00234459

0.00688584 −0.73727241 −0.00005658

−0.00234459 −0.00005658 −0.95986670


and the obtained C11, C12, C13 values are 29.9855, 11.5772 and 12.6454 GPa, respectively (C14, C15 and C16,
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as expected for the hexagonal FF crystal, are close to zero and could be discarded). In a similar way the ε1

regression set is used to strain the system according to the next distortion matrix

δ =

1 0 0

0 1 + ε1 0

0 0 1


for getting the C21, C22, C23 elastic constants. The obtained values are 11.7265, 30.8255 and 12.782 GPa,

respectively. Finally, for the ε1 regression set is used to strain the system with the next distortion matrix:

δ =

1 0 0

0 1 0

0 0 1 + ε1


leading to C31, C32, C33 values of 12.8772, 12.8709 and 28.6398 GPa, respectively. The corresponding upper

block C matrix 29.9855 11.5772 12.6454

11.7265 30.8255 12.782

12.8772 12.8709 28.6398

 (2)

obtained for the hexagonal FF crystal system is not symmetric, however the differences between the symmetry

related elements are negligible. Upon inversion we get the next Young’s Moduli, E1 = 22.9 GPa and E2 = 23.6

GPa for FF, values that correlate well with the reported experimental ones for such property.

To further corroborate the reliability of our results we have calculated the Poisson’s ratios, νij , which are

within the theoretical bound −1 < νij < 0.5 (see Table 2). It is known that deviations from this bound are

connected to the accumulation of numerical errors in the calculation of the elastic matrix elements. The values

of the Poisson’s ratios here calculated are indeed in the range from 0.09 to 0.45, giving us confidence in the

methodology used for calculating the elastic matrix elements.

Table 2: Computed Poisson’s Ratios
Dipeptide ν12 ν21 ν13 ν31 ν23 ν32
FF 0.235 0.246 0.337 0.312 0.338 0.300
FF6N 0.206 0.206 0.376 0.311 0.383 0.309
LF-Water 0.318 0.251 0.170 0.127 0.288 0.356
LF-noWater 0.406 0.244 0.147 0.271 0.433 0.091
FL 0.261 0.352 0.257 0.385 0.142 0.157
AV 0.119 0.110 0.397 0.383 0.396 0.390
VA 0.103 0.109 0.375 0.369 0.374 0.363
VV 0.094 0.097 0.375 0.365 0.370 0.366

In conclusion, the stress-strain methodology is better suited to be applied in fluxional systems due to the fact

that stress response is more sensible to small deformations as we presented above, producing appreciable changes

in the stress matrix of several orders of magnitude with respect to the reference stress matrix and it is thus

capable of amplify the response of the fluxional crystal towards small distortions.
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Alignment of the hydrogen bond network

The orientation of hbs with respect to the principal lattice vectors, is estimated calculating the angle θi formed

between a vector that goes from the acceptor atom to the proton, and the principal lattice vectors. In Figure 2

it is shown the distribution of the θi values for these hbs. In such figure it is clearly seen that the majority of

the hbs form large angles with the lattice vectors. The best aligned hbs are considered to be the ones with the

smallest θi value on each systems, which is found to correspond to hbs in which θi < 40◦.

Figure 2: The orientation of hbs with respect to the principal lattice vectors, measured by the θ angle, versus the
N-H bond length of the group forming the hbs. (a) Orientation with respect to the lattices vectors perpendicular
to the pore axis. (b) Orientation with respect to the lattice vector along the pore axis. Closed circles type F-F
crystals. Open circles type V-A crystals.
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