Supporting Information

Sulfur Poisoning Pt and PtCo Anode and Cathode Catalysts in Polymer Electrolyte Fuel Cells Studied by Operando Near Ambient Pressure Hard X-ray Photoelectron Spectroscopy

Suwilai Chaveanghong,[†] Takahiro Nakamura,[†] Yasumasa Takagi,^{†,§} Benjamin Cagnon,[†] Tomoya Uruga,^{‡,§} Mizuki Tada,[□] Yasuhiro Iwasawa,[‡] and Toshihiko Yokoyama^{†,*}

- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- § Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

E-mail: yokoyama@ims.ac.jp (Toshihiko Yokoyama)

Figure S1. Typical CV curves of the cathode (a,b) Pt/C (2.6 nm) and (c,d) Pt_3Co/C (3.0 nm) electrodes for as-received, aged, and degraded (after ADT) MEA. (b) and (d) are just the magnified plots of (a) and (c), respectively.

Figure S2. S 1s HAXPES at the anode Pt_3Co/C (3.0 nm) electrode with increasing the cathode-anode bias voltage from 0 to 1.2 V (a) before and (b) after ADT. At the anode, 4,000 Pa H₂O and 200 Pa H₂ gases were introduced, whereas N₂ (25 mL/min) flowed into the cathode. The cathode is grounded. The gray and red lines are the observed and fitted spectra, respectively.

Figure S3. S 1s HAXPES at the cathode Pt/C (2.6 nm) electrode with increasing the cathode-anode bias voltage from 0 to 1.2 V (a) before and (b) after ADT. At the cathode, water vapor (4,000 Pa) from water bath (50°C) was introduced into the measurement chamber, whereas hydrogen gas (H₂, 99.99999%, 15 mL/min) was fed into the anode. The cathode is grounded. The gray and red lines are the observed and fitted spectra, respectively.

Figure S4. Pt $3d_{5/2}$ HAXPES at the cathode Pt/C (2.6 nm) electrode with increasing the cathode-anode bias voltage from 0 to 1.2 V (a) before and (b) after ADT. At the cathode, water vapor (4,000 Pa) from water bath (50°C) was introduced into the measurement chamber, whereas hydrogen gas (H₂, 99.99999%, 15 mL/min) was fed into the anode. The cathode is grounded. The gray and red lines are the observed and fitted spectra, respectively.

Figure S5. S 1s HAXPES at the cathode Pt_3Co/C (3.0 nm) electrode with increasing the cathode-anode bias voltage from 0 to 1.2 V (a) before and (b) after ADT. At the cathode, water vapor (4,000 Pa) from water bath (50°C) was introduced into the measurement chamber, whereas hydrogen gas (H₂, 99.99999%, 15 mL/min) was fed into the anode. The cathode is grounded. The gray and red lines are the observed and fitted spectra, respectively.

Figure S6. Pt $3d_{5/2}$ HAXPES at the cathode Pt₃Co/C (3.0 nm) electrode with increasing the cathode-anode bias voltage from 0 to 1.2 V (a) before and (b) after ADT. At the cathode, water vapor (4,000 Pa) from water bath (50°C) was introduced into the measurement chamber, whereas hydrogen gas (H₂, 99.99999%, 15 mL/min) was fed into the anode. The cathode is grounded. The gray and red lines are the observed and fitted spectra, respectively.

Figure S7. Component ratios of (a,d) Pt^0 , (b,e) Pt^{1+} , and (c,f) Pt^{2+} in the Pt/C (a,b,c) and Pt_3Co (d,e,f) cathode electrodes before (black) and after (red) ADT, with increasing (light filled) and decreasing (open) the cathode-anode bias voltage, evaluated from the Pt $3d_{5/2}$ HAXPES given in Figures S3 and S5.