Supporting Information

Boosting electrochemical nitrogen reduction reaction performance of two-dimensional Mo Porphyrin monolayer via turning the coordination environment

Shiqiang Liu^a· Zhiwen Cheng^a· Yawei Liu^a· Xiaoping Gao^a· Yujia Tan^a· Yuanyang Ren^a· Zhemin Shen^{abc*}·

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^b Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, P. R. China

^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China

Corresponding author:

Zhemin Shen

Shanghai Jiao Tong University, Dongchuan Road, Minhang District, Shanghai, 200240, China.

Tel: +86-21-54741065, Fax: +86-21-54742863

Email: zmshen@sjtu.edu.cn

Content

Гhermochemistry	3
ر Fable S1 and S2	4
Table S3. S4 and S5	5
Table S6	6
-igure S1	7
Figure S2 and S3	8
Figure S4 and S5	9
References	9

Thermochemistry

When we calculate the Gibbs free energy difference (ΔG) between two neighboring intermediates, which can be named as 1 and 2, ΔG can be calculated as:

$$\Delta G_{21} = G_2 - G_1(1)$$

Such as: in the reaction $N_2^* \rightarrow N_2 H^*$, where '*' denotes the substrate, the Gibbs free energy ΔG will result in the following equation:

 $G = G \bigl(N_2 H * \bigr) - G \bigl(N_2 * \bigr) - G \bigl(H^+ / e^- \bigr) \, (2)$

For this equation, the chemical potential of the H^+/e^- pair equals to the half value of the chemical potential of the dihydrogen molecule. Given the standard hydrogen electrode conditions, the $G(H^+/e^-)$ equals to $1/2G(H_2)$.^{1,2}

Adsorbed intermediates species were only taken vibrational entropy (S) into account, which the corresponding function is showed in the (3) formula.

$$S = -R \sum_{i} \ln\left(1 - e^{-hv_{i}}/_{kT}\right) + R \sum_{i} \frac{hv_{i} e^{-hv_{i}}/_{kT}}{kT \left(1 - e^{-hv_{i}}/_{kT}\right)}$$
(3)

among which R=8.314J·mol⁻¹K⁻¹, k_B =1.38*10⁻²³J·K⁻¹ h=6.63*10⁻³⁴J·s, T=298.15K, i is the frequency number, v_i is the vibrational frequency.

Table S1. N_2 absorption energy in end-on and side-on configuration, the geometric structures and electronic structures of pure 2D Mo-Pp monolayer and 2D Mo-Pp monolayers modified by heteroatoms.

	В	С	N^3	0	Р	S
Side-on	-1.43	-0.67	-0.08	-0.24	-0.38	-0.60
End-on	-1.92	-1.33	-0.77	-0.63	-0.99	-0.90
Mo charge	1.48	1.53	1.44	1.37	1.33	1.24
electronegativity	2.04	2.55	3.04	3.44	2.19	2.58
electronegativity of N ₃ X	2.79	2.9175	3.04	3.14	2.8275	2.925
X P _z filling	0.221	0.386	0.782	1.376	0.491	0.803
N ₃ X P _x filling	3.151	3.476	3.759	4.028	3.228	3.470
N ₃ X P _y filling	3.151	3.476	3.756	4.028	3.228	3.469
N ₃ X P _z filling	2.734	2.856	3.127	3.856	3.028	3.198
optimized lattice parameters	8.444	8.416	8.437	8.403	8.390	8.365

Table S2. Regression models for calculating of those 2D Mo-Pp monolayers

	Model	<i>R</i> ²	SD	F	sig.
1	$E(s) = 0.794\epsilon_X - 1.105$	0.682	0.392	3.473	0.136
2	$E(s) = 0.761 \epsilon_{N3X} - 2.954$	0.392	0.417	2.577	0.184
3	$E(e) = 0.953\varepsilon_X - 1.734$	0.697	0.288	9.210	0.039
4	$E(e) = 0.936\epsilon_{N3X} - 4.023$	0.618	0.324	6.466	0.064
5	$E(s) = 2.840\phi + 0.498\epsilon_X - 4.876$	0.796	0.279	5.861	0.092
6	$E(s) = 0.162\varepsilon_X + 0.546\lambda - 2.118$	0.527	0.425	1.673	0.325
7	$E(e) = 1.553\phi + 0.790\epsilon_{X} - 3.796$	0.801	0.270	6.023	0.089
8	$E(e) = 0.851\epsilon_X + 0.088\lambda - 1.897$	0.699	0.332	3.482	0.165

 $\begin{array}{c|c} \epsilon_{X} & \phi & N \\ \hline \epsilon_{X} & 0.802 & 0.293 \\ \hline \epsilon_{e} & 0.835 & 0.632 & 0.436 \\ \end{array}$

Table S3. Correlation coefficient between absorption energy and ϵ_X , ϕ and N

Table S4. Thermodynamic quantities for the isolated N₂, H₂, NH₃ species in the gas phase, in eV (Mild conditions, T= 298.15 K and f = 101 325 Pa).

	ZPE	TS	Ε	Gibbs free energy
H_2	0.32	0.394	-6.77	-6.84
N_2	0.15	0.584	-16.63	-17.05
NH ₃	0.94	0.604	-19.53	-19.19

Table S5. Gibbs free energy for the chemisorbed intermediates species on 2D Mo-Pp monolayer modified by B, in eV (Mild conditions, T=298.15 K and f=101 325 Pa).

	Gibbs free energy		Gibbs free energy
N ₂ end-on	-239.60	NNH*(e)	-242.67
NNH ₂ *	-246.48	N*	-231.32
NH*	-235.27	NH ₂ *	-238.84
NH ₃ *	-241.98	NHNH*(e)	-245.30
NHNH ₂ *(e)	-249.56	NH ₂ NH ₂ *(e)	-252.51
N ₂ side-on	-239.11	NNH*(s)	-242.43
NHNH*(s)	-245.83	NHNH ₂ *(s)	-249.49
NH ₂ NH ₂ *(s)	-252.26	Mo-Pp-B	-221.10

species	species	Mo-Pp	N_2^*	NNH*	• NHNH*	NHNH ₂ *	NH ₂ NH ₂ *	NH ₂ *	NH ₃ *
	N _x H _x		0.31	0.41	0.23	0.20	0.14	0.34	-0.13
altornating	Mo@N ₃ B	1.18	0.87	0.91	0.93	0.76	0.00	0.74	1.06
atternating	carbon substrate	-1.18	-1.18	-1.32	-1.17	-0.96	0.14	-1.08	-0.92
species	species	Mo-Pp	N ₂ *	NNH*	[*] NNH ₂ *	N*	NH*	NH ₂ *	NH ₃ *
distal	N _x H _x		0.31	0.41	0.39	1.26	0.59	0.34	-0.13
	Mo@N ₃ B	1.18	0.87	0.91	0.81	0.06	0.72	0.74	1.06
	carbon substrate	-1.18	-1.18	-1.32	-1.19	-1.33	-1.31	-1.08	-1.19
species	species	Mo-Pp	N ₂ *	NNH*	* NHNH*	NHNH ₂ *	NH ₂ NH ₂ *	NH ₂ *	NH ₃ *
enzymatic	N _x H _x		0.52	0.63	0.57	0.23	-0.21	0.34	-0.13
	Mo@N ₃ B	1.18	0.81	0.84	0.65	0.78	0.99	0.74	1.06
	carbon substrate	-1.18	-1.33	-1.47	-1.22	-1.01	-0.78	-1.08	-0.92

Table S6. Charge population of three parts along the alternating, distal and enzymatic pathway.

Figure S1. The electron localization function (ELF) of 2D Mo-Pp monolayers modified by C, O, P and S, corresponding to a, b, c, d, respectively. Note: the lack (0) or abundance (0.8) of electron.

Figure S2. Optimized structures of various intermediates on 2D Mo-Pp modified by B along the Distal, Alternating and Enzymatic pathway.

Figure S3. The Gibbs free energy profiles of the NRR on 2D Mo-Pp monolayers modified by B at zero through distal pathway without and with solvent effect.

Figure S4 Variations of temperature and energy against the time for AIMD simulations of 2D Mo-Pp monolayer modified by C, O, P and S heteroatoms. The simulation is run at 500 K for 10 ps with a time step of 2 fs.

Figure S5 Charge population of three moieties along the alternating pathway and enzymatic pathway of NRR on 2D Mo-Pp monolayer modified by B.

References

1. J. Rossmeisl, A. Logadottir and J. K. Nørskov, Chemical Physics, 2005, 319,

178-184.

- 2. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *The Journal of Physical Chemistry B*, 2004, 108, 17886-17892.
- 3. S. Liu, Y. Liu, X. Gao, Y. Tan, Z. Cheng, Z. Shen and M. Fan, *The Journal of Physical Chemistry C*, 2020, 124, 1492-1499.
- 4. <u>https://webbook.nist.gov/</u>.