Electronic Supplementary Information: The Role of A-Cations in the Polymorphic Stability and Optoelectronic Properties of Lead-free ASnl₃ Perovskites

Mailde S. Ozório,* Srikanth Malladi,* Rafael Besse,* and Juarez L. F. Da Silva*

São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560 – 970, São Carlos, SP, Brazil

E-mail: mailde.s.ozorio@usp.br; smalladi@usp.br; rafael.besse@usp.br; juarez_dasilva@iqsc.usp.br

Contents

1 Introduction										
2	Stru	uctural, Energetic and Optical Parameters Definitions	S2							
3	Cor	mputational Convergence Tests	$\mathbf{S3}$							
4	Low	vest Energy $ASnI_3$ Perovskites	$\mathbf{S9}$							
5	MA	${ m SnI}_3$ perovskites	S37							
	5.1	Cubic structures of $MASnI_3$ perovskites	S37							
	5.2	Pseudo-cubic structures of $MASnI_3$ perovskites	S39							
	5.3	Orthorhombic structures of $MASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots$	S41							
	5.4	Tetragonal structures of $MASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S43							
	5.5	Pseudo-hexagonal structures of $MASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots$	S45							
	5.6 Hexagonal structures of $MASnI_3$ perovskites $\ldots \ldots \ldots \ldots$									
6	MP	$PSnI_3$ perovskites	S47							
	6.1	Cubic structures of $MPSnI_3$ perovskites	S47							
	6.2	Pseudo-cubic structures of $MPSnI_3$ perovskites	S49							
	6.3	Orthorhombic structures of $MPSnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots$	S51							
	6.4	Tetragonal structures of $MPSnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S53							
	6.5	Pseudo-hexagonal structures of $MPSnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots$	S55							
	6.6	Hexagonal structures of $MPSnI_3$ perovskites $\ldots \ldots \ldots$	S56							
7	FAS	${ m SnI}_3$ perovskites	S57							
	7.1	Cubic structures of $FASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S57							
	7.2	Pseudo-cubic structures of $FASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S59							
	7.3	Orthorhombic structures of $FASnI_3$ perovskites	S61							
	7.4	Tetragonal structures of $FASnI_3$ perovskites $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S63							

7.5	Pseudo-hexagonal structures of $FASnI_3$ perovskites		 •	•	•	•	•	 S65
7.6	Hexagonal structures of $FASnI_3$ perovskites				•			 S66

1 Introduction

In this electronic supporting information, we report the definition for the structural parameters, computational convergence calculations, and additional data for all the studied systems and properties. Furthermore, additional information can be obtained directly with the authors by e-mail.

2 Structural, Energetic and Optical Parameters Definitions

The tin effective coordination number was obtained by the following equation,

$$ECN^{Sn} = \sum_{j} \exp\left[1 - \left(\frac{d_{ij}}{d_{av}^{i}}\right)^{6}\right], \qquad d_{av}^{i} = \frac{\sum_{j} d_{ij} \exp\left[1 - \left(\frac{d_{ij}}{d_{\min}}\right)^{6}\right]}{\sum_{j} \exp\left[1 - \left(\frac{d_{ij}}{d_{\min}}\right)^{6}\right]}, \qquad (1)$$

where d_{ij} is the Sn–I bond-length of octahedra, d^i_{av} a weighted average bond length, and d_{\min} the shortest Sn–I bond length of octahedron.

The cohesive energy was achieved by the following equation,

$$E_{coh} = \frac{E(A \operatorname{SnI}_{3(s)}) - \sum \nu E_X}{Z} , \qquad (2)$$

where E_X indicates the total energy in eV/atom of each ν free atom X contained in the $ASnI_3$ bulk with Z formula-unit per cell.

The absorption coefficient, $\alpha(\omega)$, was obtained by the following equation,

$$\alpha(\omega) = \frac{\sqrt{2}\omega}{c} \left[\sqrt{\epsilon_1^2 + \epsilon_2^2} - \epsilon_1 \right]^{\frac{1}{2}}$$
(3)

where, ω represent the incident photon frequency, c is the speed of light, while ϵ_1^1 and ϵ_1^2 represent, respectively, the real and imaginary parts of the dielectric function.

3 Computational Convergence Tests

Figure S1 Orientation of the organic cation C–N bond in the cage formed by octahedra.

Figure S2 PBE results for $CH_3NH_3SnI_3$ volume, lattice parameters, and cubic deviation in relation to the highest kpoints density.

Figure S3 PBE results for $CH_3NH_3SnI_3$ relative total energy to the energy of highest k-points density.

Table S1 Cubic CH₃NH₃SnI₃ perovskites: k points density (KD), k-points mesh (KM), number of k-points (NK), volume (V), cubic volume (a_0^c) , lattice parameters (a_0, b_0, b_0) , cubic deviation (CD) and the relative deviation (considering all significant numbers) of aforementioned parameters in relation to the highest k-points density.

1-16	KD	KM	NK	V	ΔV	a_0^c	Δa_0^c	CD	ΔCD	a_0	Δa_0	b_0	Δb_0	c_0	Δc_0
				(\AA^3)	(%)	(Å)	(%)	(Å)	(%)	(Å)	(%)	(Å	(%)	(Å)	(%)
	10	$1 \times 2 \times 1$	2	242.66	-8.48	6.24	-2.91	1.96	715.91	5.98	-10.60	6.79	4.90	5.97	7.98
•	20	$3 \times 3 \times 3$	10	253.05	-4.56	6.33	-1.54	0.08	-68.33	6.30	-3.15	6.30	-0.57	6.38	-0.88
32	30	$5 \times 5 \times 5$	39	263.37	-0.67	6.41	-0.22	0.23	-6.46	6.49	-0.30	6.33	-0.05	6.41	-0.31
	40	$6 \times 6 \times 6$	80	267.32	0.82	6.44	0.27	0.26	8.78	6.53	0.38	6.35	0.28	6.44	0.17
D	50	$8 \times 8 \times 8$	170	266.36	0.46	6.43	0.15	0.25	3.92	6.52	0.20	6.35	0.16	6.44	0.10
AN	60	$9 \times 9 \times 9$	205	265.80	0.25	6.43	0.08	0.25	2.12	6.51	0.11	6.35	0.14	6.43	0.00
NBA	70	$11\times11\times11$	366	265.51	0.14	6.43	0.05	0.24	0.31	6.51	0.05	6.35	0.18	6.43	-0.09
	80	$12\times13\times12$	518	265.14	0.00	6.42	0.00	0.24	0.00	6.50	0.00	6.34	0.00	6.43	0.00
	10	$1 \times 2 \times 1$	2	242.67	-8.31	6.24	-2.85	0.81	237.31	5.98	-8.05	6.78	7.04	5.98	-6.84
00	20	$3 \times 3 \times 3$	10	253.27	-4.31	6.33	-1.46	0.16	-34.30	6.29	-3.19	6.31	-0.47	6.38	-0.68
1	30	$5 \times 5 \times 5$	39	262.83	-0.70	6.41	-0.23	0.21	-11.54	6.48	-0.37	6.33	-0.11	6.41	-0.22
S	40	$6 \times 6 \times 6$	80	267.07	0.91	6.44	0.30	0.25	3.66	6.52	0.34	6.35	0.26	6.44	0.30
3AND	50	$8 \times 8 \times 8$	170	266.09	0.54	6.43	0.18	0.25	3.44	6.52	0.22	6.34	0.10	6.44	0.21
	60	$9 \times 9 \times 9$	205	265.69	0.39	6.43	0.13	0.25	3.57	6.51	0.17	6.35	0.14	6.43	0.07
ĨZ	70	$11\times11\times11$	366	266.45	0.67	6.43	0.25	0.25	4.55	6.52	0.28	6.35	0.20	6.44	0.19
	80	$12\times13\times12$	518	264.67	0.00	6.42	0.00	0.24	0.00	6.50	0.00	6.34	0.00	6.42	0.00

Table S3 Orthorhombic hybrid $CH_3NH_3SnI_3$ perovskites optimization: k-points density (KD), k-points mesh (KM), Number of k-points (NK), volume (V), lattice parameters (a_0, b_0, b_0) , and the relative deviation (considering all significant numbers) of aforementioned parameters in relation to the highest k-pints density.

KD	KM	NK	V	ΔV	a_0	Δa_0	b_0	Δb_0	c_0	Δc_0
			(\AA^3)	(%)	(Å)	(%)	(Å	(%)	(Å)	(%)
10	$1 \times 1 \times 1$	1	1025.71	3.49	9.29	1.23	13.27	4.87	8.32	-2.52
20	$2 \times 2 \times 2$	8	996.53	0.54	9.17	-0.08	12.70	0.42	8.55	0.19
30	$3 \times 2 \times 4$	12	993.22	0.21	9.18	-0.03	12.69	0.31	8.53	-0.07
40	$4 \times 3 \times 5$	18	991.50	0.04	9.17	-0.07	12.66	0.09	8.54	0.02
50	$5 \times 4 \times 6$	36	991.01	-0.01	9.18	0.06	12.66	0.09	8.52	-0.16
60	$7 \times 5 \times 7$	48	991.13	0.00	9.18	0.00	12.65	0.00	8.54	0.00

Table S2 Cubic hybrid CH₃NH₃SnI₃ perovskites optimization: relative total energy, ΔE_{tot} , average, d_{I-H}^N , and standard deviation (σ_{I-H}^N) of stronger hydrogen bond of $-NH_3^+$ group, average (d_{I-H}^C) and standard deviation (σ_{I-H}^C) of stronger hydrogen bond of $-CH_3$ group, difference of the average hydrogen bonds of $-NH_3^+$ and $-CH_3$, Δd_{I-H} , effective coordination number, ECN^{Sn}, average, d_{av}^{Sn-I} , and standard deviation of Sn-I bond lengths, σ^{Sn-I} , octahedra diagonal I-Sn-I angle, Θ , and standard deviation, σ^{Θ} , adjacent I-Sn-I angle, θ , and standard deviation, σ^{θ} , distortion index (DI), and bond angle variance (BAV).

	KD	ΔE_{tot}	$d_{\rm I-H}^N$	$\sigma_{\rm I-H}^N$	$d_{\rm I-H}^C$	$\sigma_{\rm I-H}^C$	$\Delta d_{\rm I-H}$	ECN ^{Sn}	$d_{av}^{\mathrm{Sn-I}}$	$\sigma^{\mathrm{Sn-I}}$	Θ	σ^{Θ}	θ	σ^{θ}	DI	BAV
	(\AA^{-1})	(meV)	(Å)	(Å)	(Å)	(Å)	(Å)	(NNN)	(Å)	(Å)	$\left(\operatorname{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	-	$(\deg.)^2$
2	10	-2452.15	2.82	0.29	3.24	0.25	0.43	5.22	3.13	0.21	178.27	2.03	90.00	1.25	0.06	1.56
 	20	-134.90	2.69	0.06	3.41	0.01	0.72	5.91	3.16	0.07	175.70	0.96	89.99	2.28	0.02	5.21
SC	30	-11.31	2.69	0.06	3.53	0.03	0.84	5.05	3.21	0.21	171.69	4.14	89.85	4.70	0.05	22.09
R	40	5.60	2.69	0.08	3.52	0.10	0.83	4.76	3.23	0.24	171.11	4.69	89.82	5.07	0.06	25.77
ΒA	50	1.69	2.68	0.08	3.52	0.10	0.83	4.84	3.23	0.23	171.27	4.27	89.84	4.93	0.05	24.30
Z	60	0.43	2.69	0.07	3.52	0.08	0.84	4.88	3.23	0.23	171.25	4.20	89.84	4.93	0.05	24.30
	70	1.05	2.69	0.07	3.51	0.08	0.82	4.88	3.22	0.23	171.23	4.36	89.83	4.96	0.05	24.63
	80	0.00	2.69	0.06	3.55	0.05	0.86	4.91	3.22	0.23	171.03	4.08	89.83	5.02	0.05	25.18
	10	-2463.64	2.79	0.27	3.27	0.27	0.48	5.23	3.13	0.21	177.40	3.15	90.01	1.91	0.06	3.64
0	20	-134.85	2.69	0.06	3.41	0.01	0.72	5.92	3.17	0.06	175.98	0.66	89.99	2.12	0.02	4.48
ပါ။	30	-11.93	2.69	0.06	3.53	0.03	0.84	5.09	3.21	0.20	171.55	4.11	89.85	4.76	0.04	22.66
S	40	5.35	2.69	0.08	3.51	0.11	0.82	4.77	3.23	0.24	170.92	4.50	89.82	5.13	0.06	26.39
N	50	0.96	2.69	0.07	3.53	0.08	0.84	4.84	3.23	0.23	170.78	4.38	89.82	5.18	0.05	26.90
NBAI	60	0.36	2.69	0.08	3.53	0.07	0.83	4.88	3.23	0.23	171.29	4.41	89.83	4.94	0.05	24.41
	70	1.49	2.69	0.08	3.50	0.11	0.81	4.83	3.23	0.23	171.43	4.41	89.84	4.87	0.05	23.76
	80	0.00	2.69	0.06	3.52	0.06	0.83	4.95	3.22	0.22	170.89	4.09	89.84	5.08	0.05	25.79

Table S4 Orthorhombic hybrid $CH_3NH_3SnI_3$ perovskites optimization: relative total energy (ΔE_{tot}), average (d_{I-H}^N) and standard deviation (σ_{I-H}^N) of stronger hydrogen bond of $-NH_3^+$ group, average (d_{I-H}^C) and standard deviation (σ_{I-H}^C) of stronger hydrogen bond of $-CH_3$ group, difference of the average hydrogen bonds of $-NH_3^+$ and $-CH_3$ (Δd_{I-H}), octahedra effective coordination number (ECN^{Sn}), average (d_{av}^{Sn-I}) and standard deviation of Sn-I bond lengths (σ^{Sn-I}), octahedra diagonal I-Sn-I angle (Θ) and standard deviation (σ^{Θ}), octahedra adjacent I-Sn-I angle (θ) and standard deviation (σ^{θ}), distortion index (DI), and bond angle variance (BAV).

	KD	ΔE_{tot}	$d_{\rm I-H}^N$	$\sigma_{\rm I-H}^N$	$d_{\rm I-H}^C$	$\sigma^{C}_{\rm I-H}$	$\Delta d_{\rm I-H}$	$\mathrm{ECN}^{\mathrm{Sn}}$	$d_{av}^{\mathrm{Sn-I}}$	$\sigma^{\rm Sn-I}$	Θ	σ^{Θ}	θ	σ^{θ}	DI	BAV
	(\AA^{-1})	(meV)	(Å)	(Å)	(Å)	(Å)	(Å)	(NNN)	(Å)	(Å)	$(\deg.)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	-	$(\deg.)^2$
26	10	2718.66	2.68	0.07	3.16	0.02	0.47	5.99	3.32	0.02	180.00	0.00	90.00	8.09	0.00	59.47
	20	166.40	2.64	0.01	3.23	0.13	0.60	6.00	3.21	0.01	180.00	0.00	90.00	2.74	0.00	6.82
\mathbf{s}	30	51.41	2.65	0.01	3.25	0.12	0.60	6.00	3.20	0.01	180.00	0.00	90.00	2.77	0.00	6.98
R	40	5.57	2.65	0.02	3.24	0.13	0.59	6.00	3.20	0.01	180.00	0.00	90.00	2.62	0.00	6.24
3A.	50	1.14	2.66	0.01	3.24	0.11	0.58	6.00	3.20	0.01	180.00	0.00	90.00	2.68	0.00	6.55
Z	60	0.00	2.66	0.00	3.25	0.11	0.59	6.00	3.20	0.01	180.00	0.00	90.00	2.61	0.00	6.20

Table S5 ENCUT analysis (NBANDS default) for cubic hybrid CH₃NH₃SnI₃ perovskites optimization: k-points mesh (KM), Number of k-points (NK), volume (V), cubic volume (a_0^c) , lattice parameters (a_0, b_0, b_0) , relative total energy (ΔE_{tot}) , cubic deviation (CD) and the relative deviation of aforementioned parameters in relation to the highest k-pints density.

ENCUT	KM	NK	V	ΔV	a_0^c	Δa_0^c	CD	ΔCD	a_0	Δa_0	b_0	Δb_0	c_0	Δc_0
(eV)			(\AA^3)	(%)	(Å)	(%)	(Å)	(%)	(Å)	(%)	(Å	(%)	(Å)	(%)
421	$6 \times 6 \times 6$	80	243.05	-9.13	6.24	-3.10	0.07	-73.07	6.25	-4.29	6.20	-2.36	6.27	-2.79
526	$6\times6\times6$	80	260.09	-2.76	6.38	-0.93	0.15	-42.31	6.43	-1.53	6.32	-0.47	6.39	-0.93
631	$6\times6\times6$	80	263.33	-1.55	6.41	-0.46	0.24	-0.08	6.49	-0.61	6.33	-0.31	6.41	-0.06
737	$6\times6\times6$	80	266.25	-0.46	6.43	-0.16	0.26	0.00	6.52	-0.15	6.35	0.00	6.43	-0.31
842	$6\times6\times6$	80	267.32	-0.06	6.44	0.00	0.27	3.85	6.53	0.00	6.35	0.00	6.44	-0.16
947	$6\times6\times6$	80	268.21	0.27	6.45	0.16	0.28	7.69	6.54	0.15	6.36	0.16	6.45	0.00
1053	$6\times6\times6$	80	267.48	0.00	6.44	0.00	0.26	0.00	6.53	0.00	6.35	0.00	6.45	0.00

Table S6 ENCUT test (NBANDS default) for cubic hybrid $CH_3NH_3SnI_3$ perovskites optimization: relative total energy (ΔE_{tot}), average (d_{I-H}^N) and standard deviation (σ_{I-H}^N) of stronger hydrogen bond of $-NH_3^+$ group, average (d_{I-H}^C) and standard deviation (σ_{I-H}^C) of stronger hydrogen bond of $-CH_3$ group, difference of the average hydrogen bonds of $-NH_3^+$ and $-CH_3$ (Δd_{I-H}), octahedra effective coordination number (ECN^{Sn}), average (d_{av}^{Sn-I}) and standard deviation of Sn–I bond lengths (σ^{Sn-I}), octahedra diagonal I–Sn–I angle (Θ) and standard deviation (σ^{Θ}), octahedra adjacent I–Sn–I angle (θ) and standard deviation (σ^{θ}), distortion index (DI), and bond angle variance (BAV).

ENCUT	ΔE_{tot}	$d_{\rm I-H}^N$	$\sigma_{\rm I-H}^N$	$d^{C}_{\rm I-H}$	$\sigma^{C}_{\rm I-H}$	$\Delta d_{\rm I-H}$	$\mathrm{ECN}^{\mathrm{Sn}}$	$d_{av}^{\mathrm{Sn-I}}$	$\sigma^{\rm Sn-I}$	Θ	σ^{Θ}	θ	σ^{θ}	DI	BAV
	(meV)	(Å)	(Å)	(Å)	(Å)	(Å)	(NNN)	(Å)	(Å)	$(\deg.)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	-	$(\deg.)^2$
421	208.83	2.67	0.01	3.30	0.02	0.63	5.78	3.13	0.10	171.20	2.40	89.94	4.71	0.02	22.23
526	36.98	2.68	0.07	3.47	0.05	0.79	5.15	3.20	0.19	171.29	4.01	89.85	4.87	0.04	23.75
631	10.70	2.69	0.06	3.53	0.04	0.84	4.99	3.22	0.22	170.87	4.10	89.83	5.09	0.05	25.98
737	4.73	2.69	0.09	3.49	0.11	0.81	4.99	3.22	0.22	171.15	4.65	89.82	5.05	0.05	25.98
842	2.08	2.69	0.08	3.52	0.10	0.83	4.76	3.23	0.24	171.11	4.69	89.82	5.07	0.06	25.77
947	1.93	2.69	0.09	3.51	0.12	0.82	4.69	3.24	0.25	171.28	4.86	89.81	5.02	0.06	25.27
1053	0.00	2.69	0.08	3.53	0.10	0.84	4.75	3.23	0.24	171.07	4.34	89.82	5.04	0.06	25.40

Figure S4 Cubic deviation, relative volume, and relative total energy as a function of cutoff energy.

4 Lowest Energy ASnI₃ Perovskites

Table S7 Structural parameters of the lowest energy of $ASnI_3$ perovskites: average $(d_{I-H}^{N/P})$ and standard deviation $(\sigma_{I-H}^{N/P})$ of stronger hydrogen bond of $-NH_x^+/-PH_3^+$ group, average (d_{I-H}^C) and standard deviation (σ_{I-H}^C) of stronger hydrogen bond of $-CH_3$ group, difference of the average hydrogen bonds of $-NH_x^+/-PH_3^+$ and $-CH_3$ (Δd_{I-H}) , octahedra effective coordination number (ECN^{Sn}), average (d_{av}^{Sn-I}) and standard deviation of Sn–I bond lengths (σ^{Sn-I}) , octahedra diagonal I–Sn–I angle (Θ) and standard deviation (σ^{Θ}) , octahedra adjacent I–Sn–I angle (θ) and standard deviation (σ^{θ}) , distortion index (DI), and bond angle variance (BAV).

	Fase	$d_{\mathrm{I-H}}^{N/P}$	$\sigma_{\mathrm{I-H}}^{N/P}$	$d_{\rm I-H}^C$	$\sigma^{C}_{\mathrm{I-H}}$	$\Delta d_{\mathrm{I-H}}$	NCE ^{Sn}	$\sigma^{\rm NCE}$	$d_{av}^{\mathrm{Sn-I}}$	$\sigma^{\rm Sn-I}$	Θ	σ^{Θ}	θ	σ^{θ}	ID	VAL
		(Å)	(Å)	(Å)	(Å)	(Å)	(NNN)	(NNN)	(Å)	(Å)	$(\deg.)$	$\left(\mathrm{deg.}\right)$	$\left(\mathrm{deg.}\right)$	$(\deg.)$	(%)	$(\deg.)^2$
	CI	2.71	0.05	3.32	0.04	0.61	5.75	0.00	3.14	0.10	171.05	1.81	89.95	4.74	1.93	22.50
\mathbf{I}_3	\mathbf{PC}	2.71	0.07	3.52	0.40	0.81	5.70	0.00	3.14	0.12	170.75	2.66	89.93	4.97	2.37	24.67
AS_{I}	ORC	2.61	0.05	3.12	0.03	0.51	6.00	0.00	3.16	0.01	180.00	0.00	90.00	2.46	0.21	6.03
M	TETR	2.65	0.03	3.18	0.10	0.54	6.00	0.00	3.16	0.01	180.00	0.00	90.00	2.61	0.24	6.79
	$_{\rm PH}$	2.73	0.15	3.24	0.07	0.51	5.89	0.08	3.20	0.07	176.81	1.79	89.99	3.38	1.49	11.95
	CI	2.93	0.33	3.12	0.27	0.19	5.62	0.00	3.17	0.13	174.75	2.75	89.94	2.98	3.33	8.90
\mathbf{I}_3	\mathbf{PC}	2.94	0.33	3.13	0.28	0.19	5.53	0.00	3.18	0.15	174.68	4.71	89.91	3.43	2.97	11.79
PS_1	ORC	3.02	0.08	3.20	0.04	0.18	5.76	0.08	3.17	0.10	175.13	2.18	89.95	3.79	2.59	15.36
Ξ	TETR	3.05	0.02	3.09	0.02	0.04	6.00	0.00	3.16	0.06	180.00	0.00	90.00	1.40	0.33	1.97
	$_{\rm PH}$	2.89	0.20	3.17	0.23	0.28	5.91	0.04	3.20	0.06	176.84	1.02	90.07	2.91	1.75	9.06
	CI	2.78	0.22	3.28	0.00	0.50	5.49	0.00	3.18	0.15	171.13	1.52	90.00	4.67	3.97	21.85
\mathbf{I}_3	\mathbf{PC}	2.81	0.24	3.22	0.00	0.41	5.21	0.00	3.19	0.21	169.93	2.98	89.93	5.41	4.34	29.27
FASnI	ORC	2.77	0.06	3.11	0.00	0.35	5.22	0.00	3.19	0.20	171.63	6.95	89.85	6.94	4.90	48.19
	TETR	3.23	0.27	3.22	0.00	-0.01	5.97	0.00	3.14	0.04	176.69	2.88	90.04	2.12	0.98	4.50
	$_{\rm PH}$	2.88	0.11	3.15	0.01	0.27	5.73	0.19	3.20	0.11	175.72	2.60	90.00	4.99	2.88	26.07

Figure S5 MASnI₃ perovskites: X-H and C-N bond lengths of A-cation, and distance from C/N to iodide of inorganic-framework.

Figure S6 MPSnI₃ perovskites: X-H and C-P bond lengths of A-cation, and distance from C/P to iodide of inorganic-framework.

Figure S7 $FASnI_3$ perovskites: X-H and C-N bond lengths of A-cation, and distance from C/N to iodide of inorganic-framework.

Figure S8 Relative energy versus all H…I distances and angles (CHI and PHI) of cubic and pseudo-cubic MPSnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Orthorhombic

Figure S9 Relative energy versus all H…I distances and angles (CHI and PHI) of orthorhombic and tetragonal MPSnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Hexagonal

Figure S10 Relative energy versus all $H \cdots I$ distances and angles (CHI and PHI) of hexagonal and pseudo-hexagonal MPSnI₃ perovskites in a cutoff radius of 3.5 Å.

Figure S11 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of cubic and pseudo-cubic MASnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Orthorhombic

Figure S12 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of orthorhombic and tetragonal MASnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Hexagonal

Figure S13 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of hexagonal and pseudo-hexagonal MASnI₃ perovskites in a cutoff radius of 3.5 Å.

Figure S14 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of cubic and pseudo-cubic FASnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Orthorhombic

Figure S15 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of orthorhombic and tetragonal FASnI₃ perovskites in a cutoff radius of 3.5 Å.

(a) Hexagonal

Figure S16 Relative energy versus all $H \cdots I$ distances and angles (CHI and NHI) of hexagonal and pseudo-hexagonal FASnI₃ perovskites in a cutoff radius of 3.5 Å.

Figure S17 All CHI and NHI angles of the cubic and pseudo-cubic $MASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

(a) Orthorhombic

Figure S18 All CHI and NHI angles of the orthorhombic and tetragonal $MASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

(a) Hexagonal

Figure S19 All CHI and NHI angles of the hexagonal and pseudo-hexagonal $MASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

Figure S20 All CHI and PHI angles of the cubic and pseudo-cubic MPSnI₃ perovskites in a cutoff radius of 3.5 Å versus the H···I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

(a) Orthorhombic

Figure S21 All CHI and PHI angles of the orthorhombic and tetragonal MPSnI₃ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

(a) Hexagonal

Figure S22 All CHI and PHI angles of the hexagonal and pseudo-hexagonal MPSnI₃ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

Figure S23 All CHI and NHI angles of the cubic and pseudo-cubic $FASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H···I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

Figure S24 All CHI and NHI angles of the orthorhombic and tetragonal $FASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

(a) Hexagonal

Figure S25 All CHI and NHI angles of the hexagonal and pseudo-hexagonal $FASnI_3$ perovskites in a cutoff radius of 3.5 Å versus the H…I distances. The values of the lowest energy cubic perovskite are highlighted in the plot.

Figure S26 All H…I distances and XHI angles (X = C, N or P) versus the relative total energy of $ASnI_3$ perovskites.

Figure S27 All XHI angles (X = C, N or P) versus the H…I distances for $ASnI_3$ perovskites. The red, dark green and light blue color lines represents the fitting of all data of NHI, CHI and PHI angles versus distance, respectively. The light green and blue curves represent the fitting for the dots of lowest energy perovskites.

Figure S28 Band gap energy of $ASnI_3$ perovskites as a function of the relative total energy.

Figure S29 a) Average Bader charge for each element of $ASnI_3$ perovskites. b) Average Bader charge on A-cation, Sn and I.

Figure S30 Band structure of cubic/pseudo-cubic (C/PC), orthorhombic (O), tetragonal (T), and hexagonal/pseudo-hexagonal (H/PH) phases of $ASnI_3$. To analyse the role of the inorganic framework, the band structure analysis of the frozen inorganicframework were done for comparison. The top of valence band was set to zero.

Cubic	MA	SnI ₃	MPS	SnI3	FAS	SnI3
	m_h/m_0	m_e/m_0	m_h/m_0	m_e/m_0	m_h/m_0	m_e/m_0
R-Γ	-0.128	0.265	-0.134	0.239	-0.146	0.480
R-M	-0.133	0.859	-0.112	0.748	-0.156	1.074
R-X	-0.125	0.844	-0.132	0.704	-0.151	1.239
Pseudo-cubic	MA	SnI ₃	MP	SnI ₃	FAS	SnI ₃
R-U	-0.118	0.956	-0.117	0.866	-0.123	0.325
R-T	-0.132	0.603	-0.150	0.883	-0.136	1.008
Orthorhombic	MA	SnI ₃	MP	SnI ₃	FAS	SnI ₃
Г-Z	-0.130	0.981	-0.090	0.071	-0.144	1.026
Г-Ү	-0.101	0.062	-0.125	0.900	-0.115	0.293
Г-Х	-0.126	0.672	-0.120	0.762	-0.202	1.328
Tetragonal	MA	SnI ₃	MP	SnI ₃	FAS	SnI ₃
Z-R					-0.084	0.244
Z-Γ					-0.091	0.711
Г-М	-0.163	0.810	-0.124	0.868		
Г-Z	-0.112	0.067	-0.080	0.055		
Г-Х	-0.137	0.640	-0.101	0.853		
Hexagonal	MA	SnI ₃	MP	SnI ₃	FAS	SnI ₃
Г-М			-0.544	0.407		
К-Г	-0.471	0.417	-0.695	0.422	-0.930	0.390
K-M	-0.273	0.305			-0.653	0.484
Pseudo-hexagonal	MA	SnI ₃	MP	SnI ₃	FAS	SnI ₃
Г-Х					-0.619	0.356
Г-Ү	-0.540	0.383	-0.554	-0.384	-0.584	0.433
X-Y	-5.000	0.410	-2.673	0.385		

Table S8 Effective mass of hole and electron for the specified lines of all the lowest $ASnI_3$ perovskites.

Table S9 Average effective mass of hole and electron considering the lines indicated in Table S8 for the lowest energy $ASnI_3$ perovskites.

	MA	SnI ₃	MPS	SnI ₃	FAS	SnI ₃
Phases	m_h/m_0	m_e/m_0	m_h/m_0	m_e/m_0	m_h/m_0	m_e/m_0
Cubic	-0.129	0.656	-0126	0.581	-0.151	0.931
Pseudo-cubic	-0.125	0.780	-0.134	0.874	-0.129	0.667
Orthorhombic	-0.120	0.572	-0.112	0.578	-0.154	0.882
Tetragonal	-0.137	0.506	-0.102	0.592	-0.088	0.478
Hexagonal	-0.372	0.361	-0.619	0.414	-0.791	0.437
Pseudo-hexagonal	-2.770	0.396	-1.613	0.384	-0.601	0.394

5 MASnI₃ perovskites

5.1 Cubic structures of MASnI₃ perovskites

Figure S31 Orientation of organic cation in the ideal cubic structure.

N	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.26	6.26	6.26	8	6.27	6.27	6.27
2	6.26	6.26	6.26	9	6.24	6.24	6.24
3	6.25	6.25	6.25	10	6.24	6.24	6.24
4	6.25	6.25	6.25	11	6.24	6.24	6.24
5	6.27	6.27	6.27	12	6.27	6.27	6.27
6	6.27	6.27	6.27	13	6.27	6.27	6.27
7	6.25	6.25	6.25	14	6.26	6.26	6.26

Table S10 Lattice parameters of cubic phase of $MASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$)

Table S11 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MASnI₃ cubic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		$(\mathrm{meV/f.u.})$	(meV/f.u.)	(eV/atom)
1	0.00	-32.16	-3.28	8	6.72	-25.44	-3.28
2	0.21	-31.95	-3.28	9	20.11	-12.04	-3.28
3	0.58	-31.58	-3.28	10	21.50	-10.65	-3.28
4	0.75	-31.41	-3.28	11	22.17	-9.99	-3.28
5	2.10	-30.06	-3.28	12	22.99	-9.17	-3.28
6	2.80	-29.35	-3.28	13	23.87	-8.29	-3.28
7	3.10	-29.06	-3.28	14	23.94	-8.22	-3.28

5.2 Pseudo-cubic structures of $MASnI_3$ perovskites

Figure S32 Orientation of organic cation in the pseudo-cubic structures.

N	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.29	6.20	6.29	8	6.30	6.21	6.29
2	6.29	6.20	6.29	9	6.19	6.27	6.29
3	6.29	6.20	6.29	10	6.28	6.18	6.28
4	6.29	6.20	6.29	11	6.26	6.18	6.28
5	6.19	6.28	6.29	12	6.28	6.22	6.28
6	6.29	6.21	6.30	13	6.27	6.29	6.25
7	6.21	6.30	6.29	14			

Table S12 Lattice parameters of pseudo-cubic of $MASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$)

Table S13 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MASnI₃ pseudo-cubic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	Ν	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-35.65	-3.28	8	1.40	-34.25	-3.28
2	0.03	-35.62	-3.28	9	1.56	-34.10	-3.28
3	0.28	-35.37	-3.28	10	20.91	-14.74	-3.28
4	0.38	-35.27	-3.28	11	21.12	-14.53	-3.28
5	0.52	-35.13	-3.28	12	25.08	-10.57	-3.28
6	0.64	-35.01	-3.28	13	27.32	-8.34	-3.28
7	1.04	-34.61	-3.28				

5.3 Orthorhombic structures of $MASnI_3$ perovskites

Figure S33 Orientation of organic cation in the orthorhombic structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	8.91	12.54	8.45	10	8.72	12.57	8.75
2	8.88	12.54	8.45	11	8.76	12.38	8.83
3	8.95	12.41	8.67	12	8.59	12.55	8.87
4	8.41	12.54	8.98	13	8.73	12.54	8.75
5	8.86	12.52	8.50	14	9.18	12.38	8.52
6	8.69	12.71	8.69	15	8.66	12.60	8.93
7	8.65	12.59	8.79	16	8.86	12.60	8.75
8	8.72	12.63	8.70	17	8.56	12.37	9.17
9	8.91	12.26	8.79	18	8.94	12.54	8.67

Table S14 Lattice parameters of orthorhombic phase of $MASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$)

Table S15 Relative total energy (ΔE_{tot}), enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MASnI₃ orthorhombic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	Ν	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-134.57	-3.29	10	37.86	-96.71	-3.28
2	0.26	-134.31	-3.29	11	42.12	-92.45	-3.28
3	5.72	-128.85	-3.29	12	50.12	-84.45	-3.28
4	15.03	-119.53	-3.28	13	62.35	-72.22	-3.28
5	19.35	-115.22	-3.28	14	79.02	-55.55	-3.28
6	26.33	-108.23	-3.28	15	92.28	-42.29	-3.28
7	30.45	-104.12	-3.28	16	96.17	-39.39	-3.28
8	35.56	-99.00	-3.28	17	103.96	-30.60	-3.28
9	36.09	-98.48	-3.28	18	107.77	-26.79	-3.28

5.4 Tetragonal structures of MASnI₃ perovskites

Figure S34 Orientation of organic cation in tetragonal structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	8.67	8.67	12.50	9	8.74	8.74	12.53
2	8.67	8.67	12.52	10	8.81	8.81	12.42
3	8.72	8.72	12.60	11	8.79	8.79	12.61
4	8.71	8.71	12.63	12	8.82	8.82	12.53
5	8.68	8.68	12.63	13	8.81	8.81	12.57
6	8.85	8.85	12.26	14	8.80	8.80	12.58
7	8.73	8.73	12.57	15	8.86	8.86	12.35
8	8.78	8.78	12.40				

Table S16 Lattice parameters of tetragonal phase of $MASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$)

Table S17 Relative total energy (ΔE_{tot}), enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MASnI₃ pseudo-cubic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	$(\mathrm{meV/f.u.})$	$(\mathrm{meV/f.u.})$	(eV/atom)		$(\mathrm{meV/f.u.})$	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-121.67	-3.28	9	49.31	-72.36	-3.28
2	8.91	-112.76	-3.28	10	59.01	-62.66	-3.28
3	18.66	-103.02	-3.28	11	83.23	-38.44	-3.28
4	22.20	-99.47	-3.28	12	86.29	-35.38	-3.28
5	24.62	-97.06	-3.28	13	88.78	-32.89	-3.28
6	24.86	-96.82	-3.28	14	102.56	-19.12	-3.28
7	25.16	-96.51	-3.28	15	108.16	-13.51	-3.28
8	28.93	-92.75	-3.28				

Figure S35 Orientation of organic cation in the pseudo-hexagonal structures.

Ν	a_0	b_0	c_0	α	β	γ	N	a_0	b_0	c_0	α	β	γ
	Å	Å	Å	deg	deg	deg		Å	Å	Å	deg	deg	\deg
1	8.72	8.46	7.71	92.55	96.68	119.97	6	8.79	8.42	7.79	96.07	80.87	121.38
2	8.92	8.54	7.69	91.30	98.40	122.28	7	8.74	8.74	7.79	95.80	95.82	122.75
3	8.45	8.59	7.75	98.83	89.04	118.77	8	8.80	8.44	7.78	82.98	99.46	121.20
4	8.51	8.50	7.75	100.74	86.44	117.65	9	8.47	8.88	7.67	90.00	90.00	121.39
5	8.74	8.49	7.77	100.26	81.23	120.57							

Table S18 Lattice parameters of pseudo-hexagonal phase of MASnI₃ perovskite

Table S19 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each pseudo-hexagonal MASnI₃ structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	Ν	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-94.14	-3.28	6	12.80	-81.35	-3.28
2	0.60	-93.54	-3.28	7	37.43	-56.71	-3.28
3	2.17	-91.97	-3.28	8	42.82	-51.33	-3.28
4	3.11	-91.04	-3.28	9	43.27	-50.87	-3.28
5	7.86	-86.28	-3.28				

5.6 Hexagonal structures of $MASnI_3$ perovskites

Figure S36 Orientation of organic cation in the hexagonal structures.

Ν	a_0	b_0	c_0	α	β	γ	N	a_0	b_0	c_0	α	β	γ
	(Å)	(Å)	(Å)	deg	deg	deg		Å	Å	Å	deg	deg	\deg
1	8.52	8.52	7.73	90.00	90.00	120.00	6	8.51	8.51	7.79	90.00	90.00	120.00
2	8.62	8.62	7.58	90.00	90.00	120.00	7	8.61	8.61	7.58	90.00	90.00	120.00
3	8.59	8.59	7.61	90.00	90.00	120.00	8	8.73	8.73	7.37	90.00	90.00	120.00
4	8.62	8.62	7.57	90.00	90.00	120.00	9	8.74	8.74	7.39	90.00	90.00	120.00
5	8.68	8.68	7.55	90.00	90.00	120.00							

Table S20 Lattice parameters of hexagonal phase of $MASnI_3$ perovskite

Table S21 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MASnI₃ cubic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	Ν	ΔE_{tot}	ΔH_f^o	E_{coh}
	$(\mathrm{meV/f.u.})$	(meV/f.u.)	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-38.64	-3.28	6	13.98	-24.66	-3.28
2	2.20	-36.44	-3.28	7	17.53	-21.11	-3.28
3	5.15	-33.49	-3.28	10	29.38	-9.26	-3.28
4	10.58	-28.06	-3.28	11	52.56	13.92	-3.28
5	10.99	-27.65	-3.28				

6 MPSnI₃ perovskites

6.1 Cubic structures of MPSnI₃ perovskites

Figure S37 Orientation of organic cation in the cubic structures.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-77.86	-2.93	8	0.88	-76.98	-2.93
2	0.01	-77.85	-2.93	9	0.94	-76.92	-2.93
3	0.29	-77.57	-2.93	10	1.10	-76.76	-2.93
4	0.45	-77.41	-2.93	11	1.18	-76.67	-2.93
5	0.52	-77.34	-2.93	12	1.31	-76.55	-2.93
6	0.70	-77.16	-2.93	13	1.48	-76.37	-2.93
7	0.70	-77.16	-2.93	14	16.69	-61.17	-2.93

Table S22 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ cubic structure.

Table S23 Lattice parameters of cubic phase of MPSnI₃ perovskite, ($\alpha = \beta = \gamma = 90^{\circ}$)

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.34	6.34	6.34	8	6.34	6.34	6.34
2	6.34	6.34	6.34	9	6.33	6.33	6.33
3	6.33	6.33	6.33	10	6.34	6.34	6.34
4	6.34	6.34	6.34	11	6.33	6.33	6.33
5	6.34	6.34	6.34	12	6.33	6.33	6.33
6	6.34	6.34	6.34	13	6.34	6.34	6.34
7	6.33	6.33	6.33	14	6.34	6.34	6.34

6.2 Pseudo-cubic structures of $MPSnI_3$ perovskites

Figure S38 Orientation of organic cation in the pseudo-cubic structures.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	$(\mathrm{meV/f.u.})$	(meV/f.u.)	(eV/atom)		$(\mathrm{meV/f.u.})$	(meV/f.u.)	(eV/atom)
1	0.00	-79.43	-2.93	7	0.80	-78.63	-2.93
2	0.07	-79.36	-2.93	8	0.82	-78.61	-2.93
3	0.17	-79.26	-2.93	9	0.92	-78.51	-2.93
4	0.20	-79.23	-2.93	10	1.01	-78.42	-2.93
5	0.38	-79.05	-2.93	11	2.32	-77.10	-2.93
6	0.63	-78.80	-2.93	12	2.55	-76.88	-2.93

Table S24 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ pseudo-cubic structure.

Table S25 Lattice parameters of pseudo-cubic phase of MPSnI₃ perovskite, ($\alpha = \beta = \gamma = 90^{\circ}$)

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.41	6.31	6.30	7	6.40	6.31	6.31
2	6.31	6.30	6.40	8	6.39	6.31	6.31
3	6.31	6.32	6.40	9	6.31	6.31	6.39
4	6.39	6.32	6.31	10	6.31	6.40	6.31
5	6.32	6.30	6.39	11	6.32	6.37	6.33
6	6.39	6.31	6.31	12	6.33	6.34	6.33

6.3 Orthorhombic structures of $MPSnI_3$ perovskites

Figure S39 Orientation of organic cation in the orthorhombic structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	9.15	12.63	8.45	10	8.83	12.60	9.10
2	8.44	12.64	9.14	11	9.12	12.60	8.73
3	8.43	12.63	9.12	12	8.97	12.56	8.97
4	8.44	12.62	9.12	13	8.60	12.69	9.27
5	8.85	12.52	9.02	14	8.78	12.53	9.15
6	9.22	12.55	8.71	15	8.93	12.63	8.91
7	8.90	12.66	8.92	16	8.95	12.64	8.92
8	8.91	12.71	8.94	17	8.99	12.62	8.95
9	8.72	12.56	8.17	18	8.94	12.59	8.97

Table S26 Lattice parameters of orthorhombic phase of MPSnI₃ perovskite, ($\alpha = \beta = \gamma = 90^{\circ}$)

Table S27 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ orthorhombic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-174.48	-2.94	10	73.06	-101.42	-2.93
2	6.14	-168.34	-2.94	11	75.01	-99.47	-2.93
3	6.56	-167.92	-2.94	12	75.71	-98.77	-2.93
4	6.72	-167.76	-2.93	13	79.95	-94.53	-2.93
5	61.11	-113.37	-2.93	14	82.04	-92.45	-2.93
6	63.17	-111.32	-2.93	15	83.01	-91.47	-2.93
7	63.89	-110.59	-2.93	16	88.84	-85.64	-2.93
8	70.85	-103.63	-2.93	17	93.76	-80.72	-2.93
9	71.74	-102.74	-2.93	18	97.11	-77.38	-2.93

6.4 Tetragonal structures of $MPSnI_3$ perovskites

Figure S40 Orientation of organic cation in the tetragonal structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	8.83	8.83	12.57	9	8.94	8.94	12.61
2	8.91	8.91	12.66	10	8.94	8.94	12.61
3	8.93	8.93	12.53	11	8.94	8.94	12.68
4	8.94	8.94	12.59	12	8.96	8.96	12.56
5	8.93	8.93	12.71	13	8.96	8.96	12.63
6	8.96	8.96	12.59	14	8.95	8.95	12.59
7	8.93	8.93	12.58	15	8.96	8.96	12.63
8	8.95	8.95	12.61				

Table S28 Lattice parameters of tetragonal phase of MPSnI₃ perovskite, ($\alpha = \beta = \gamma = 90^{\circ}$)

Table S29 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ tetragonal structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-130.91	2.93	9	42.21	-88.69	2.93
2	20.36	-110.54	2.93	10	42.34	-88.57	2.93
3	20.90	-110.01	2.93	11	42.92	-87.98	2.93
4	27.32	-103.59	2.93	12	46.81	-84.10	2.93
5	27.46	-103.44	2.93	13	49.94	-80.96	2.93
6	33.98	-96.93	2.93	14	53.54	-77.37	2.93
7	36.57	-94.34	2.93	15	66.01	-64.90	2.93
8	37.76	-93.14	2.93				

6.5 Pseudo-hexagonal structures of MPSnI₃ perovskites

Figure S41 Orientation of organic cation in the pseudo-hexagonal structures.

Ν	a_0	b_0	c_0	α	β	γ	Ν	a_0	b_0	c_0	α	β	γ
	Å	Å	Å	deg	deg	deg		Å	Å	Å	deg	deg	\deg
1	9.06	8.59	7.69	94.32	86.92	119.84	6	9.07	9.07	7.60	87.29	87.28	123.17
2	9.06	8.60	7.70	85.51	93.14	119.99	7	9.14	9.00	7.58	85.41	89.80	122.90
3	8.79	8.67	7.66	94.32	91.82	117.12	8	8.64	9.14	7.48	90.00	90.00	119.04
4	8.78	8.68	7.66	94.35	91.95	117.13	9	8.69	8.99	7.73	96.90	90.96	119.40
5	9.11	8.88	7.41	90.42	89.65	121.48							

Table S30 Lattice parameters of pseudo-hexagonal phase of $MPSnI_3$ perovskite

Table S31 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ pseudo-hexagonal structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-89.43	-2.93	6	19.33	-70.10	-2.93
2	0.12	-89.32	-2.93	7	24.02	-65.42	-2.93
3	6.77	-82.66	-2.93	8	30.92	-58.51	-2.93
4	7.12	-82.32	-2.93	9	31.92	-57.52	-2.93
5	16.18	-73.25	-2.93				

6.6 Hexagonal structures of MPSnI₃ perovskites

Figure S42 Orientation of organic cation in the hexagonal structures.

Table S32 Lattice	parameters	of hexagonal	phase of	of MPSnI ₃	perovskite
-------------------	------------	--------------	----------	-----------------------	------------

Ν	a_0	b_0	c_0	α	β	γ	N	a_0	b_0	c_0	α	β	γ
	Å	Å	Å	deg	deg	\deg		Å	Å	Å	deg	deg	\deg
1	8.83	8.83	7.67	90.00	90.00	120.00	6	8.84	8.84	7.69	90.00	90.00	120.00
2	8.82	8.82	7.67	90.00	90.00	120.00	7	8.89	8.89	7.55	90.00	90.00	120.00
3	8.73	8.73	7.83	90.00	90.00	120.00	8	9.07	9.07	7.31	90.00	90.00	120.00
4	8.73	8.73	7.82	90.00	90.00	120.00	9	9.07	9.07	7.31	90.00	90.00	120.00
5	9.00	9.00	7.30	90.00	90.00	120.00							

Table S33 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each MPSnI₃ hexagonal structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-67.73	-2.93	6	10.81	-56.92	-2.93
2	0.08	-67.65	-2.93	7	29.48	-38.25	-2.92
3	6.41	-61.32	-2.93	8	38.74	-28.99	-2.92
4	7.11	-60.62	-2.93	9	39.11	-28.62	-2.92
5	8.73	-59.00	-2.93				

7 FASnI₃ perovskites

7.1 Cubic structures of FASnI₃ perovskites

Figure S43 Orientation of organic cation in the cubic structures.

Table S34 Lattice parameters	of cubic phase of FASnI ₃	$_{3}$ perovskite, ($lpha=eta=\gamma=90^{\circ}$)
------------------------------	--------------------------------------	---

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.35	6.35	6.35	8	6.34	6.34	6.34
2	6.35	6.35	6.35	9	6.35	6.35	6.35
3	6.35	6.35	6.35	10	6.34	6.34	6.34
4	6.34	6.34	6.34	11	6.41	6.41	6.41
5	6.35	6.35	6.35	12	6.32	6.32	6.32
6	6.34	6.34	6.34	13	6.39	6.39	6.39
7	6.35	6.35	6.35	14	6.42	6.42	6.42

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	40.17	-3.68	8	0.69	40.86	-3.68
2	0.09	40.26	-3.68	9	0.70	40.87	-3.68
3	0.43	40.60	-3.68	10	0.80	40.98	-3.68
4	0.44	40.61	-3.68	11	38.86	79.03	-3.67
5	0.44	40.61	-3.68	12	108.38	148.55	-3.67
6	0.56	40.73	-3.68	13	131.27	171.44	-3.67
7	0.58	40.75	-3.68	14	135.64	175.81	-3.66

Table S35 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each FASnI₃ cubic structure.

7.2 Pseudo-cubic structures of $FASnI_3$ perovskites

Figure S44 Orientation of organic cation in the pseudo-cubic structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	6.28	6.29	6.52	8	6.29	6.27	6.53
2	6.28	6.29	6.52	9	6.30	6.27	6.52
3	6.29	6.28	6.52	10	6.28	6.29	6.52
4	6.30	6.52	6.27	11	6.21	6.47	6.50
5	6.27	6.52	6.30	12	6.40	6.24	6.31
6	6.28	6.30	6.51	13	6.53	6.53	6.20
7	6.30	6.27	6.52	14	6.41	6.33	6.40

Table S36 Lattice parameters of pseudo-cubic phase of $FASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$)

Table S37 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each FASnI₃ pseudo-cubic structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	31.14	-3.68	8	0.15	31.30	-3.68
2	0.00	31.15	-3.68	9	0.17	31.31	-3.68
3	0.02	31.16	-3.68	10	0.20	31.34	-3.68
4	0.06	31.20	-3.68	11	27.58	58.72	-3.67
5	0.08	31.22	-3.68	12	110.11	141.25	-3.67
6	0.08	31.22	-3.68	13	115.90	147.04	-3.67
7	0.10	31.24	-3.68	14	138.88	170.02	-3.67

7.3 Orthorhombic structures of $FASnI_3$ perovskites

Figure S45 Orientation of organic cation in the orthorhombic structures.

N	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	8.40	12.52	9.63	11	8.45	12.50	9.40
2	8.79	12.37	8.90	12	9.51	12.54	8.32
3	8.72	12.53	9.05	13	9.50	12.54	8.33
4	8.89	12.42	8.95	14	9.13	12.89	8.57
5	8.45	12.55	9.51	15	8.54	12.75	9.04
6	8.90	12.82	8.86	16	8.99	12.86	8.68
7	8.86	12.47	9.03	17	8.54	12.56	9.38
8	8.82	12.47	9.06	18	9.05	12.71	9.04
9	9.56	12.57	8.35	19	9.08	12.63	9.08
10	9.31	12.62	8.48				

Table S38 Lattice parameters of othorhombic phase of FASnI₃ perovskite, ($\alpha = \beta = \gamma = 90^{\circ}$).

Table S39 Relative total energy (ΔE_{tot}) , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each FASnI₃ orthorhombic structure.

N	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	(meV/f.u.)	(eV/atom)
1	0.00	-48.14	-3.68	11	75.01	26.88	-3.68
2	2.63	-45.50	-3.68	12	75.12	26.98	-3.68
3	13.91	-34.23	-3.68	13	75.89	27.76	-3.68
4	25.25	-22.88	-3.68	14	78.88	30.75	-3.68
5	28.32	-19.82	-3.68	15	128.50	80.36	-3.67
6	31.28	-16.86	-3.68	16	173.47	125.33	-3.67
7	46.96	-1.18	-3.68	17	192.61	144.47	-3.67
8	51.34	3.20	-3.68	18	219.93	171.79	-3.67
9	64.75	16.61	-3.68	19	261.66	213.52	-3.66
10	66.63	18.49	-3.68				

7.4 Tetragonal structures of $FASnI_3$ perovskites

Figure S46 Orientation of organic cation in the tetragonal structures.

Ν	a_0 (Å)	b_0 (Å)	c_0 (Å)	N	a_0 (Å)	b_0 (Å)	c_0 (Å)
1	8.88	8.88	6.19	7	9.23	9.23	6.20
2	8.92	8.92	6.20	8	9.05	9.05	6.32
3	8.97	8.97	6.33	9	9.08	9.08	6.32
4	9.17	9.17	6.22	10	9.09	9.09	6.24
5	8.80	8.80	6.64	11	9.07	9.07	6.23
6	9.08	9.08	6.26				

Table S40 Lattice parameters of tetragonal phase of $FASnI_3$ perovskite, ($\alpha = \beta = \gamma = 90^\circ$).

Table S41 Relative total energy, ΔE_{tot} , enthalpy of formation, ΔH_f^o , and cohesive energy, E_{coh} , of each FASnI₃ tetragonal structure.

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-34.36	-3.68	7	180.23	145.87	-3.67
2	11.34	-23.02	-3.68	8	200.38	166.02	-3.67
3	71.48	37.13	-3.68	9	247.73	213.37	-3.66
4	92.68	58.32	-3.67	10	261.27	226.91	-3.66
5	102.09	67.74	-3.67	11	298.32	263.97	-3.66
6	125.90	91.55	-3.67				

7.5 Pseudo-hexagonal structures of $FASnI_3$ perovskites

Figure S47 Orientation of organic cation in the pseudo-hexagonal structures.

Table S42 Lattice parameters of pseudo-hexagonal phase of $FASnI_3$ perovskite.

Ν	a_0	b_0	c_0	α	β	γ	Ν	a_0	b_0	c_0	α	β	γ
	Å	Å	Å	deg	deg	deg		Å	Å	Å	deg	deg	deg
1	8.52	8.64	7.91	86.36	92.15	120.62	5	8.53	8.57	7.90	92.84	91.19	119.57
2	8.64	8.55	7.87	87.32	94.43	120.47	6	8.65	8.60	7.93	91.21	87.04	121.41
3	8.54	8.76	7.83	94.11	87.71	120.92	7	9.51	8.67	7.47	93.42	90.00	123.24
4	8.72	8.64	7.81	84.79	94.73	121.20							

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	(meV/f.u.)	(meV/f.u.)	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-46.09	-3.68	5	4.15	-41.93	-3.68
2	0.07	-46.02	-3.68	6	15.79	-30.29	-3.68
3	1.98	-44.10	-3.68	7	111.13	65.04	-3.67
4	3.41	-42.67	-3.68				

Table S43 Relative total energy, ΔE_{tot} , enthalpy of formation (ΔH_f^o) and cohesive energy (E_{coh}) of each FASnI₃ pseudo-hexagonal structure.

7.6 Hexagonal structures of FASnI₃ perovskites

Figure S48 Orientation of organic cation in the hexagonal structures.

Table S44 Lattice parameters of hexagonal phase of FASnI₃ perovskite.

Ν	a_0	b_0	c_0	α	β	γ	N	a_0	b_0	c_0	α	β	γ
	Å	Å	Å	deg	deg	deg		Å	Å	Å	deg	deg	deg
1	8.58	8.58	7.85	90.00	90.00	120.00	5	8.62	8.62	7.81	90.00	90.00	120.00
2	8.55	8.55	7.91	90.00	90.00	120.00	6	8.68	8.68	7.67	90.00	90.00	120.00
3	8.60	8.60	7.81	90.00	90.00	120.00	7	9.09	9.09	7.18	90.00	90.00	120.00
4	8.65	8.65	7.74	90.00	90.00	120.00							

Ν	ΔE_{tot}	ΔH_f^o	E_{coh}	N	ΔE_{tot}	ΔH_f^o	E_{coh}
	$(\mathrm{meV/f.u.})$	(meV/f.u.)	(eV/atom)		(meV/f.u.)	$(\mathrm{meV/f.u.})$	(eV/atom)
1	0.00	-25.31	-3.68	5	15.91	-9.41	-3.68
2	4.35	-20.96	-3.68	6	26.86	1.55	-3.68
3	5.55	-19.76	-3.68	7	202.48	177.17	-3.66
4	6.06	-19.25	-3.68				

Table S45 Relative total energy, ΔE_{tot} , enthalpy of formation, ΔH_f^o , and cohesive energy, E_{coh} , of each FASnI₃ hexagonal structure.