Supporting Information

Intramolecular charge transfer excitation induced by CH₃O substitution in 3-methoxy-1-propoxy radical

Junfei Xue, Tai Qin, Lily Zu*

College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China

Table of content

Fig S1 IR spectrum of 3-methoxy-1-propyl nitrite.

Fig S2 UV absorption spectrum of 3-methoxy-1-propyl nitrite.

Fig S3 NMR spectrum of 3-methoxy-1-propyl nitrite.

Table S1 Relative energies (in kcal mol⁻¹) of 12 unique conformers of 3-methoxy-1-propoxy radical calculated at the UB3LYP/6-311++G(d,p) Level. The corresponding Newman projections are also shown.

Table S2 Calculated 48 vibrational frequencies (cm⁻¹) of the GTG't conformer of 4-methoxy-1-butoxy radical in its ground state and CO $\sigma \rightarrow$ O p excited state.

Table S3 Calculated 39 vibrational frequencies (cm⁻¹) of the TTt conformer of 3-methoxy-1propoxy radical in its ground state and CO $\sigma \rightarrow$ O p excited state.

Scheme S1 Natural transition orbitals of the lowest three excited states of the TTt conformer of 3-methoxy-1-propoxy

Scheme S2 Change of Mülliken and NBO charge distribution due to intramolecular charge transfer excitation of 3-methoxy-1-propoxy radical (TTt conformer).

Fig. S1 IR spectrum of 3-methoxy-1-propyl nitrite.

Fig. S2 UV absorption spectrum of 3-methoxy-1-propyl nitrite.

Fig. S3 NMR spectrum of 3-methoxy-1-propyl nitrite.

Conformer	$E_{ m rel}^{\widetilde{ m X}} + \Delta Z { m PE}$	Newman projection	Mirror image
$G_1G_2t_3$	0.00	$\begin{array}{c} H_3COH_2C \\ H \\ $	$G_1^{\prime}G_2^{\prime}t_3$
$G_1G_2g_3$	2.07	H_3COH_2C H_3CO H_3CO H_3CO H_3CO H_2CH_2O H_3C H	$G_1^{\prime}G_2^{\prime}g_3^{\prime}$
$T_1G_2t_3$	0.44	$H \bigoplus_{H_2CH_2}^{O} H_{H_3CO} \bigoplus_{H_2CH_2}^{CH_2O} H_{H_3CO} \bigoplus_{H_2CH_2O}^{CH_2CH_2O} H_{H_3CO} H_{H_3CO}$	$T_1G_2't_3$
$T_1G_2g_3$	2.08	$H \xrightarrow{O} HH_3CO \xrightarrow{CH_2O} HH_3C \xrightarrow{CH_2O} H$	$T_1G_2^{\prime}g_3^{\prime}$
$G_1T_2t_3$	0.93	$\begin{array}{c} H_3COH_2C \\ H \\ $	G_1 ` T_2t_3
$G_1T_2g_3$	2.59	H_3COH_2C H H H H H_3C H_3COH_2C H_2CH_2O H H_3C H_3C H_2CH_2O H H_3C H H_3C H H_3C H H_3C H H_3C H H_3C H	$G_1^{\prime}T_2g_3^{\prime}$
$G_1T_2g_3'$	2.80	$H_{3}COH_{2}C \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H \xrightarrow{0}_{H} H$	$G_1^{\prime}T_2g_3$
$T_1T_2t_3$	1.28	$H \xrightarrow{O}_{CH_2OCH_3} H \xrightarrow{CH_2O}_{H} H \xrightarrow{CH_2O}_{H} H \xrightarrow{CH_2CH_2O}_{H} $	
$T_1T_2g_3$	4.37	$H \xrightarrow{O}_{H+H} \xrightarrow{CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H+H+H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H+H+H+H+H+H_3C} \xrightarrow{CH_2CH_2O}_{H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+$	$T_1T_2g_3'$
$G_1^{\prime}G_2t_3$	2.71	$H \xrightarrow{O} CH_2OCH_3 H_3CO \xrightarrow{CH_2O} H \xrightarrow{CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2CH_2O} H \xrightarrow{CH_2O} H CH_2$	$G_1G_2't_3$
$G_1^{\prime}G_2g_3$	3.14	$H \xrightarrow{O} CH_2OCH_3 H_3CO \xrightarrow{CH_2O} H_3C \xrightarrow{CH_2O} H_3C \xrightarrow{CH_2O} H_3C \xrightarrow{CH_2CH_2O} H_3C \xrightarrow{CH_2O} $	$G_1G_2^{\prime}g_3^{\prime}$
$G_1^{\prime}G_2g_3^{\prime}$	4.90	$H \xrightarrow{O} CH_2OCH_3 H_3CO \xrightarrow{CH_2O} H \xrightarrow{CH_2O} CH_2CH_2O$	$G_1G_2^{\prime}g_3$

Table S1 Relative energies (in kcal mol⁻¹) of 12 unique conformers of 3-methoxy-1-propoxy radical calculated at the UB3LYP/6-311++G(d,p) Level. The corresponding Newman projections are also shown.

assignment	CASSCF(9,7) ^b	CASSCF(9,7) ^b	B3LYP ^c
	\widetilde{B}	\widetilde{X}	\widetilde{X}
v_{48}	47	49	49
$ u_{47}$	85	84	80
$ u_{46}$	105	105	99
v_{45}	150	152	140
$ u_{44}$	218	219	215
ν_{43}	257	254	241
v_{42}	277	274	267
v_{41}	327	329	318
$ u_{40}$	428	421	355
v_{39}	567	467	466
ν_{38}	598	577	561
ν_{37}	759	772	745
v_{36}	851	858	834
v_{35}	899	903	873
ν_{34}	984	953	927
ν_{33}	1000	1029	997
v_{32}	1015	1055	1019
v_{31}	1075	1078	1049
v_{30}	1116	1121	1074
v_{29}	1192	1201	1119
ν_{28}	1207	1212	1142
v_{27}	1222	1230	1160
v_{26}	1226	1243	1174
v_{25}	1286	1295	1218
ν_{24}	1307	1319	1244
v_{23}	1321	1362	1298
v_{22}	1355	1381	1305
ν_{21}	1385	1416	1314
ν_{20}	1455	1463	1345
ν_{19}	1475	1468	1378
ν_{18}	1488	1481	1389
v_{17}	1526	1520	1445
v_{16}	1527	1527	1447
v_{15}	1533	1532	1456
v_{14}	1535	1533	1462
v_{13}	1544	1544	1471

Table S2 Calculated 48 vibrational frequencies (cm⁻¹) of the GTG't conformer of 4-methoxy-1-butoxy radical in its ground state and CO $\sigma \rightarrow$ O p excited state.^a

v_{12}	1568	1568	1491
ν_{11}	2962	2959	2806
ν_{10}	2965	2977	2845
ν_9	2980	2986	2890
ν_8	2996	2988	2910
$ u_7 $	3021	3000	2919
ν_6	3021	3010	2950
ν_5	3058	3016	2956
ν_4	3083	3030	2966
ν_3	3097	3037	2993
ν_2	3124	3058	3014
ν_1	3215	3094	3049
^a All calculati	ons employed th	e 6-311++G(d,p)	basis set. ^b A
uniform scale	factor of 0.95 wa	s used for CASS	CF(9,7). ^c The
calculated B3LYP frequencies were scaled by 0.98.			

Table S3 Calculated 39 vibrational frequencies (cm⁻¹) of the TTt conformer of 3-methoxy-1propoxy radical in its ground state and CO $\sigma \rightarrow O$ p excited state.^a

assignment	CASSCF(9,7) ^b	CASSCF(9,7) ^b	B3LYP ^c
	\widetilde{B}	\widetilde{X}	\widetilde{X}
V 39	67	75	60
ν_{38}	90	104	77
ν_{37}	127	137	112
ν_{36}	141	145	140
V 35	222	225	198
ν_{34}	312	327	222
ν_{33}	365	374	338
v_{32}	493	429	363
ν_{31}	676	533	515
ν_{30}	799	801	769
ν_{29}	895	961	924
$ u_{28} $	1003	965	936
$ u_{27}$	1018	1029	1010
ν_{26}	1036	1068	1045
ν_{25}	1101	1100	1057
ν_{24}	1207	1211	1125
ν_{23}	1211	1215	1145
v_{22}	1235	1247	1178

ν_{21}	1259	1274	1192
v_{20}	1300	1323	1247
ν_{19}	1312	1328	1262
ν_{18}	1350	1354	1284
ν_{17}	1374	1433	1322
v_{16}	1487	1473	1373
v_{15}	1527	1493	1401
ν_{14}	1530	1529	1446
v_{13}	1534	1533	1456
ν_{12}	1543	1538	1465
ν_{11}	1550	1544	1472
ν_{10}	1575	1571	1495
ν_9	2961	2953	2814
ν_8	2982	2975	2827
v_7	2987	2977	2878
ν_6	3026	2987	2900
ν_5	3071	3018	2911
ν_4	3107	3018	2953
ν_3	3120	3031	2985
ν_2	3121	3074	3028
ν_1	3210	3099	3053
^a All calculations employed the 6-311++G(d,p) basis set. ^b A			
uniform scale factor of 0.95 was used for CASSCF(9,7). ^c The			
calculated B3LYP frequencies were scaled by 0.98.			

Scheme S1 Natural transition orbitals of the lowest three excited states of the TTt conformer of 3-methoxy-1-propoxy

Natural Transition Orbitals

Scheme S2 Change of Mülliken and NBO charge distribution due to intramolecular charge transfer excitation of 3-methoxy-1-propoxy radical (TTt conformer).

