Supporting Information: The effect of nanoparticulate PdO co-catalysts on the Faradaic and light conversion efficiency of WO₃ photoanodes for water oxidation

Anna A. Wilson^a, Sacha Corby^a, Laia Francàs^{*b}, James R. Durrant^a, Andreas Kafizas^{*a,c,d}

^a Department of Chemistry and Centre for Plastic Electronics, Imperial College London, White City Campus, London, W12 OBZ, UK

- ^b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
- ^c The Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK
- ^d London Centre for Nanotechnology, Imperial College London, SW7 2AZ, UK

Figure S1. HR-TEM images of a) a bare WO₃ nanoneedle, b) Pd nanoparticles on WO₃ (Pd(A)/WO₃), and c) EDX for two points on Pd(A)/WO₃ (note that the Cu signal is from the TEM grid). Where Pd NPs are observed, there is an even dispersion of NPs across the nanoneedle surface. However, there is variation between nanoneedles of the same film, whereby Pd NPs are not observed on all nanoneedles. This is rationalised by the WO₃ film morphology and the Pd deposition conditions, whereby the dense nature of the WO₃ film, together with the laminar aerosol flow through the reaction chamber, inhibits the infiltration of Pd NPs throughout the coating, and thus limits Pd deposition to the upper region of the nanoneedles.

ke∖

Figure S2. X-Ray diffraction (XRD) patterns of the synthesised films compared to database values for a WO₃ standard. The defined peaks of all films correspond to crystalline monoclinic WO₃ (space group $P2_1/n$) with a = 7.3008 Å, b = 7.5389 Å, c = 7.6896 Å and β = 90.892° (ICDS no. 80056) as typical unit cell parameters. The (002) peak dominates for all photoanodes, with the (020) and (200) peaks also visible for Pd/WO₃ and Pd(A)/WO₃. The monoclinic structure extends to photoanodes with Pd NPs and confirms that the addition of a co-catalyst did not alter the crystal structure of WO₃. Relative to the non-annealed WO₃(B), the peaks for WO₃-based materials are shifted to higher diffraction angles, indicative of a reduced unit cell size that is rationalised by a lattice contraction due to a decrease in oxygen vacancies.

Figure S3. a) Raman spectra of the as-synthesised photoanodes, b) Raman spectra normalised to the peak intensities in the 800-808 cm⁻¹ region and overlayed. The broad and diffuse peaks in the WO₃(B) spectrum likely mask spectral features and are frequently observed for oxygen deficient WO₃ materials due to the significant contribution of both W⁵⁺-O and W⁶⁺-O vibrational modes,^{10,11} as expected here. The deposition of Pd NPs onto WO₃ to obtain Pd/WO₃ results in a degree of peak broadening (although the peak definition remains more notable than for WO₃(B)), however, Pd(A)/WO₃ exhibits well defined peaks analogous to those of WO₃ (see normalised spectra). The second AA-CVD step required to deposit Pd likely introduces carbon residues from the organic precursors that reduce peak definition and are removed by the annealing treatment.

Figure S4. UV-Vis absorption spectra of as-synthesised $WO_3(B)$ prior to annealing and WO_3 following annealing, in addition to photographs of the films showing the distinct colour change from dark blue to creamy white, that occurs with the decrease in near-IR absorption.

Figure S5. a) UV-Vis absorption spectra of WO_3 , Pd/ WO_3 and Pd(A)/ WO_3 photoanodes, b) UV-Vis spectra normalised at 400 nm where band gap absorption occurs, to directly compare the near-IR absorption properties.

Figure S6. Tauc plots of $(\alpha hv)^{1/2}$ vs. hv to give band gap energy estimations for a) WO₃, b) Pd/WO₃ and c) Pd(A)/WO₃.

Figure S7: Stability of photocurrent generation at 1.23 V_{RHE} over a 4-hour period (simulated 1 sun AM 1.5G irradiance).

Figure S8. LSV measurements using simulated 1 sun AM 1.5G irradiation a) for chopped-light conditions under front illumination and b) comparing current generation under front (solid line) and back illumination (dashed line).

Figure S9. FE measurements comparing the selectivity of water oxidation for a) WO₃, b) Pd/WO₃, and c) Pd(A)/WO₃, photoanodes at 1.23 V_{RHE} in 0.1 M H₂SO₄, irradiated with a 365 nm LED mimicking the photon flux that would be absorbed at 1 sun irradiance. O₂ evolution is measured in the gas phase using a Clark electrode and the theoretical O₂ yield at 100% FE is calculated from the integrated photocurrent density obtained over the course of the experiment.

Figure S10: Predicted electronic band structure before and after Fermi level equilibrium for a) Pd/WO_3 and b) $Pd(A)/WO_3$, obtained using a AFORS.HET model¹² with the parameters outlined in Table S4. The model predicts the effects of Pd oxidation state on band bending in WO_3 and does not take into account the effects of band bending at the electrolyte interfaces or applied potential.

Entry	Photoanode	% W ⁵⁺ <i>vs.</i> W ^{6+ a}	% Oxygen vacancy states ^b	% C <i>vs.</i> W ^c
1	WO ₃	7.77	1.30	0.62
2	Pd/WO ₃	6.20	1.03	0.87
3	Pd(A)/WO₃	6.37	1.06	0.66

Table S1. A comparison of the oxygen states that are vacant, calculated from the ratios of W⁵⁺ to W⁶⁺ states, in addition to the relative quantities of carbon residues present

^{*a*}Ratio calculated using the W⁵⁺ and W⁶⁺ peak areas in the W 4f scan. ^{*b*}Calculated by dividing '% W⁵⁺ vs. W^{6+'} by six, to account for each W site being associated with three oxygen sites, each with a charge of -2. ^{*c*}Ratio calculated using the total fitted peak areas of the C 1s and W 4f scans.

Table S2: A comparison of the photocurrents associated with WO_3 , Pd/WO_3 and $Pd(A)/WO_3$ photoanodes obtained from TSP calculations and LSV measurements.

	WO₃	Pd/WO₃	Pd(A)/ WO₃
TSP (mA cm ⁻²)	0.78	0.89	1.22
LSV photocurrent (mA cm ⁻²)	0.16	0.22	0.28

Table S3. Comparison of the effects of PdO addition on the FE of WO₃ compared to alternative WO₃ modifications

Entry	Photoanode	WO₃ FE / %	Modified WO ₃ FE / %	FE Increase (Change) / %	Ref.
1	Pd(A)/WO ₃ ^a	52	92	40 (77)	This work
2	FeOOH/WO ₃ ^b	27	96	69 (256)	1
3	Cr ₂ O ₃ /WO ₃ ^c	74	92	18 (24)	2
4	AI_2O_3/WO_3^d	50	80	30 (60)	3

 o 0.1 M H₂SO₄, 1.23 V_{RHE}, 365 nm LED (~1 sun); b 0.1 M KPO₄ buffer solution (pH 4), 1.34 V_{RHE}, 2 sun 200 mW cm⁻² AM 1.5G illumination; c 0.1 M Na₂SO₄, 1.0 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d 0.1 M H₂SO₄, 1.23 V_{RHE}, 1 sun 100 mW cm⁻² AM 1.5G illumination; d

Table S4: Parameters used for the band bending models in Figure S10.

	Thickness (nm) ª	Donor density (cm ⁻³)	Electron affinity/ Workfunction (eV)	E _{bg} (eV)	Density (g cm ⁻³)	Dielectric constant	Ref.
WO ₃	40	-2.50x10 ¹⁹	4.91	2.74	7.16	1000	4
PdO	10	4.20x10 ¹⁸	5.79	0.8	8.3	8	5–7
Pd	10	very high	5.22	0	11.9	2.5	8,9

^aThe thickness of the WO₃ nanoneedles and Pd-based nanoparticles were taken from the SEM and TEM images respectively.

References

- 1 C. R. Lhermitte, J. Garret Verwer and B. M. Bartlett, J. Mater. Chem. A, 2016, 4, 2960–2968.
- 2 Z. Hu, M. Xu, Z. Shen and J. C. Yu, J. Mater. Chem. A, 2015, **3**, 14046–14053.
- 3 C. Fàbrega, S. Murcia-López, D. Monllor-Satoca, J. D. Prades, M. D. Hernández-Alonso, G. Penelas, J. R. Morante and T. Andreu, Appl. Catal. B Environ., 2016, **189**, 133–140.
- 4 C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T.-L. Lee, A. Taylor, G. W. Watson, R. G. Palgrave, J. R. Durrant, C. S. Blackman and I. P. Parkin, *Adv. Funct. Mater.*, 2017, **27**, 1605413.
- 5 O. García-Serrano, A. Andraca-Adame, R. Baca-Arroyo, R. Peña-Sierra and G. Romero-Paredes R., *CCE 2011 2011 8th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. Progr. Abstr. B.*, , DOI:10.1109/ICEEE.2011.6106122.
- 6 X. Yong and M. A. A. Schoonen, *Am. Mineral.*, 2000, **85**, 543–556.
- 7 P. O. Nilsson and M. S. Shivaraman, J. Phys. C Solid State Phys., 1979, 12, 1423–1427.
- 8 Electron Work Function of the Elements, https://public.wsu.edu/~pchemlab/documents/Work-functionvalues.pdf, (accessed 2 April 2020).
- 9 W. E. Vargas, Appl. Opt., 2017, 56, 1266.
- 10 N. Xue, R. J. Yu, C. Z. Yuan, X. Xie, Y. F. Jiang, H. Y. Zhou, T. Y. Cheang and A. W. Xu, *RSC Adv.*, 2017, **7**, 2351–2357.
- 11 S. Liu, J. Gong, X. Chang, C. Li, A. Li, J. Zhang and T. Wang, J. Mater. Chem. A, 2017, 6, 3350–3354.
- 12 R. Varache, C. Leendertz, M. E. Gueunier-Farret, J. Haschke, D. Muñoz and L. Korte, *Sol. Energy Mater. Sol. Cells*, 2015, **141**, 14–23.