Electronic Supplementary Information for PCCP article "Tunnelling splitting patterns in some partially deuterated water trimers"

Mihael Eraković^a and Marko T. Cvitaš^{a*}

^a Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; E-mail: mcvitas@irb.hr

Fig. 1 Minimum action paths of flips and bifurcations connecting symmetry-related structures of $(D_2O)(H_2O)_2$, which are responsible for the formation of the tunnelling splitting spectrum. Sequential snapshots of the trimer along the path are shown, with D atoms in blue and H atoms in red. Pathways are labeled by their corresponding tunnelling matrix elements in Table 3 of the main article, with path labels in the superscript and the initial and final structure labels, A–C, in the subscript. This figure is the reproduced Figure 2 from the main article.

Fig. 2 Part I: Minimum action paths of flips and bifurcations connecting symmetry-related structures of $(HOD)(H_2O)_2$, which are responsible for the formation of the tunnelling splitting spectrum. Sequential snapshots of the trimer along the path are shown, with D atoms in blue and H atoms in red. Pathways are labeled by their corresponding tunnelling matrix elements in Table 4 of the main article, with path labels in the superscript and the initial and final structure labels, 1–6, in the subscript.

Fig. 3 Part II: Minimum action paths of flips and bifurcations connecting symmetry-related structures of $(HOD)(H_2O)_2$, which are responsible for the formation of the tunnelling splitting spectrum. Sequential snapshots of the trimer along the path are shown, with D atoms in blue and H atoms in red. Pathways are labeled by their corresponding tunnelling matrix elements in Table 4 of the main article, with path labels in the superscript and the initial and final structure labels, 1–6, in the subscript.

Fig. 4 Ground-state tunnelling splitting spectrum of pseudorotational (flip) states of $(D_2O)(H_2O)_2$. Flip states are labeled 1–6 and their energies are given in Table 1. The left set of levels refers to the non-tunnelling localized zero-point energies given in Table 2 of the main article.

Fig. 6 Ground-state tunnelling splitting spectrum of pseudorotational (flip) states of $(HOD)(H_2O)_2$. Flip states of in-bond H/D substituted isomers are labeled I1-I6, while out-of-bond substituted isomers are labeled O1-O6 and coloured red. Energies of flip states are given in Table 4. The left set of levels refers to the non-tunnelling localized zero-point energies given in Table 2 of the main article.

Fig. 5 Ground-state tunnelling splitting spectrum of pseudorotational (flip) states of $(H_2O)(D_2O)_2$. Flip states are labeled 1–6 and their energies are given in Table 2. The left set of levels refers to the non-tunnelling localized zero-point energies given in Table 2 of the main article.

Fig. 7 Ground-state tunnelling splitting spectrum of pseudorotational (flip) states of $(HOD)(D_2O)_2$. Flip states of in-bond H/D substituted isomers are labeled 11-16, while out-of-bond substituted isomers are labeled 01-06 and coloured red. Energies of flip states are given in Table 5. The left set of levels refers to the non-tunnelling localized zero-point energies given in Table 2 of the main article.

Fig. 8 Fine tunnelling splitting patterns of each pseudorotational (flip) state of $(D_2O)(H_2O)_2$, 1–6, induced by bifurcations. Energies are given in cm⁻¹ with respect to the corresponding flip state. Symmetry labels of the G_{16} group and statistical weights are also given. Energy levels are listed in Table 1.

Fig. 9 Fine tunnelling splitting patterns of each pseudorotational (flip) state of $(H_2O)(D_2O)_2$, 1–6, induced by bifurcations. Energies are given in cm⁻¹ with respect to the corresponding flip state. Symmetry labels of the G_{16} group and statistical weights are also given. Energy levels are listed in Table 2.

Fig. 10 Fine tunnelling splitting patterns of each pseudorotational (flip) state of $(HOD)(H_2O)_2$, induced by bifurcations. Flip states of in-bond H/D substituted isomers are labeled I1-I6, while out-of-bond substituted isomers are labeled O1-O6 and coloured red. Energies are given in cm⁻¹ with respect to the corresponding flip state. Symmetry labels of the G_8 group and statistical weights are also given. Energy levels are listed in Table 4.

Fig. 11 Fine tunnelling splitting patterns of each pseudorotational (flip) state of $(HOD)(D_2O)_2$, induced by bifurcations. Flip states of in-bond H/D substituted isomers are labeled I1-I6, while out-of-bond substituted isomers are labeled O1-O6 and coloured red. Energies are given in cm⁻¹ with respect to the corresponding flip state. Symmetry labels of the G_8 group and statistical weights are also given. Energy levels are listed in Table 5.

Table 1 Tunnelling-splitting pattern of $D_2O(H_2O)_2$ on MB-pol PES $^{69-71}$ with regular and scaled flip matrix elements (see text of the main article for details). The energies are given relative to the pseudorotational states 1–6. All energies are given in cm⁻¹. Symmetry labels are given in the first column and are explained in the text of main article.

Table 2 Tunnelling-splitting pattern of $H_2O(D_2O)_2$ on MB-pol PES ^{69–71} with regular and scaled flip matrix elements (see text of the main article for details). The energies are given relative to the pseudorotational states 1–6. All energies are given in cm⁻¹. Symmetry labels are given in the first column and are explained in the text of the main article.

$D_2O(H_2O)_2$	regular	scaled
6	14675.59	14637.52
$^{18}A_3^-$ (A,B,C)	1.07(-3)	1.13(-3)
${}^{9}B_{3}^{-}$ (A,B,C)	1.01(-3)	1.07(-3)
${}^{6}A_{1}^{-}$ (A,B,C)	3.90(-4)	2.93(-4)
${}^{3}B_{1}^{-}$ (A,B,C)	3.30(-4)	2.34(-4)
${}^{54}A_4^{-}$ (A,B,C)	-3.30(-4)	-2.34(-4)
${}^{27}B_4^{-}$ (A,B,C)	-3.90(-4)	-2.93(-4)
${}^{18}A_2^-$ (A,B,C)	-1.01(-3)	-1.07(-3)
${}^{9}B_{2}^{-}$ (A,B,C)	-1.07(-3)	-1.13(-3)
5	14653.86	14625.60
${}^{9}B_{3}^{+}$ (A,B,C)	2.53(-3)	2.82(-3)
$^{18}A_3^+$ (A,B,C)	2.45(-3)	2.75(-3)
${}^{3}B_{1}^{+}$ (A,B,C)	3.41(-4)	1.63(-4)
${}^{6}A_{1}^{+}$ (A,B,C)	2.62(-4)	8.75(-5)
${}^{27}B_4^+$ (A,B,C)	-2.62(-4)	-8.75(-5)
${}^{54}A_4^+$ (A,B,C)	-3.41(-4)	-1.64(-4)
${}^{9}B_{2}^{+}$ (A,B,C)	-2.45(-3)	-2.75(-3)
$^{18}A_2^{+}$ (A,B,C)	-2.53(-3)	-2.82(-3)
4	14617.81	14608.00
$^{3}B_{1}^{+}$ (A,B,C)	2.80(-3)	2.81(-3)
${}^{6}A_{1}^{+}$ (A,B,C)	2.74(-3)	2.76(-3)
${}^{9}B_{2}^{+}$ (A,B,C)	1.65(-3)	1.79(-3)
${}^{18}A_2^{\mp}$ (A,B,C)	1.60(-3)	1.74(-3)
${}^{9}B_{3}^{\mp}$ (A,B,C)	-1.60(-3)	-1.74(-3)
${}^{18}A_3^+$ (A,B,C)	-1.65(-3)	-1.79(-3)
${}^{27}B_4^+$ (A,B,C)	-2.74(-3)	-2.76(-3)
${}^{54}A_4^+$ (A,B,C)	-2.80(-3)	-2.81(-3)
3	14576.11	14585.90
${}^{6}A_{1}^{-}$ (A,B,C)	1.56(-2)	1.54(-2)
${}^{3}B_{1}^{-}$ (A,B,C)	1.55(-2)	1.53(-2)
${}^{18}A_2^-$ (A,B,C)	4.75(-3)	5.08(-3)
${}^{9}B_{2}^{-}$ (A,B,C)	4.68(-3)	5.00(-3)
$^{18}A_3^-$ (A,B,C)	-4.68(-3)	-5.00(-3)
${}^{9}B_{3}^{-}$ (A,B,C)	-4.75(-3)	-5.08(-3)
$^{54}A_4^-$ (A,B,C)	-1.55(-2)	-1.53(-2)
$^{27}B_4^-$ (A,B,C)	-1.56(-2)	-1.54(-2)
2	14533.21	14561.48
$^{18}A_3^-$ (A,B,C)	5.85(-3)	6.11(-3)
${}^{9}B_{3}^{-}$ (A,B,C)	5.34(-3)	5.61(-3)
${}^{6}A_{1}^{-}$ (A,B,C)	1.12(-3)	1.36(-3)
${}^{3}B_{1}^{-}$ (A,B,C)	6.12(-4)	8.55(-4)
$^{54}A_4^-$ (A,B,C)	-6.11(-4)	-8.53(-4)
${}^{2}{}^{\prime}B_{4}^{-}$ (A,B,C)	-1.12(-3)	-1.36(-3)
$^{18}A_2^-$ (A,B,C)	-5.34(-3)	-5.61(-3)
${}^{9}B_{2}^{-}$ (A,B,C)	-5.85(-3)	-6.11(-3)
1	14513.24	14551.31
${}^{2}B_{4}^{+}$ (A,B,C)	2.01(-2)	1.99(-2)
$^{34}A_4^+$ (A,B,C)	1.96(-2)	1.94(-2)
${}^{9}B_{2}^{+}$ (A,B,C)	3.05(-3)	3.20(-3)
$^{10}A_2^+$ (A,B,C)	2.53(-3)	2.69(-3)
$^{\prime}B_{3}$ (A,B,C)	-2.53(-3)	-2.69(-3)
$^{10}A_3$ (A,B,C)	-3.05(-3)	-3.20(-3)
$^{-}B_{1}^{+}$ (A,B,C)	-1.90(-2)	-1.94(-2)
A_1 (A, B, C)	-2.01(-2)	-1.99(-2)

$H_2O(D_2O)_2$	regular	scaled
6	12884.23	12857.43
${}^{18}A_2^-$ (A,B,C)	2.19(-4)	1.78(-4)
${}^{36}A_1^{-}$ (A,B,C)	2.19(-4)	1.78(-4)
${}^{9}A_{4}^{-}$ (A,B,C)	1.94(-4)	1.54(-4)
${}^{18}A_3^{-}$ (A,B,C)	1.94(-4)	1.53(-4)
${}^{54}B_2^{-}$ (A,B,C)	-1.94(-4)	-1.53(-4)
${}^{108}B_1^{-}$ (A,B,C)	-1.94(-4)	-1.54(-4)
${}^{27}B_4^{-}$ (A,B,C)	-2.19(-4)	-1.78(-4)
${}^{54}B_3^-$ (A,B,C)	-2.19(-4)	-1.78(-4)
5	12868.03	12848.35
${}^{9}A_{4}^{+}$ (A,B,C)	1.01(-3)	1.01(-3)
$^{18}A_2^+$ (A,B,C)	9.87(-4)	9.87(-4)
${}^{18}A_3^{+}$ (A,B,C)	9.82(-4)	9.80(-4)
${}^{36}A_1^+$ (A,B,C)	9.58(-4)	9.58(-4)
${}^{27}B_4^+$ (A,B,C)	-9.58(-4)	-9.58(-4)
${}^{54}B_2^{+}$ (A,B,C)	-9.82(-4)	-9.80(-4)
${}^{54}B_3^{\tilde{+}}$ (A,B,C)	-9.87(-4)	-9.87(-4)
${}^{108}B_1^+$ (A,B,C)	-1.01(-3)	-1.01(-3)
4	12844.90	12837.77
$^{108}B_1^+$ (A,B,C)	1.29(-4)	1.50(-4)
${}^{54}B_2^+$ (A,B,C)	1.09(-4)	1.33(-4)
${}^{54}B_2^{+}$ (A,B,C)	8.81(-5)	1.09(-4)
${}^{27}B_{4}^{+}$ (A,B,C)	6.81(-5)	9.14(-5)
${}^{36}A_1^+$ (A,B,C)	-6.81(-5)	-9.14(-5)
$^{18}A_2^+$ (A,B,C)	-8.81(-5)	-1.09(-4)
${}^{18}A_3^{+}$ (A,B,C)	-1.09(-4)	-1.33(-4)
${}^{9}A_{4}^{+}$ (A,B,C)	-1.29(-4)	-1.50(-4)
3	12814.38	12821.50
${}^{18}A_2^-$ (A,B,C)	2.31(-3)	2.34(-3)
${}^{36}A_1^-$ (A,B,C)	2.30(-3)	2.32(-3)
${}^{9}A_{4}^{-}$ (A,B,C)	2.20(-3)	2.23(-3)
${}^{18}A_2^{-}$ (A,B,C)	2.19(-3)	2.21(-3)
${}^{54}B_3^{-}$ (A,B,C)	-2.19(-3)	-2.21(-3)
${}^{108}B_1^{-}$ (A,B,C)	-2.20(-3)	-2.23(-3)
${}^{27}B_4^-$ (A,B,C)	-2.30(-3)	-2.32(-3)
${}^{54}B_2^-$ (A,B,C)	-2.31(-3)	-2.34(-3)
2	12784.17	12803.85
$^{108}B_1^-$ (A,B,C)	1.02(-3)	9.98(-4)
${}^{54}B_2^-$ (A,B,C)	9.45(-4)	9.30(-4)
${}^{54}B_2^{-}$ (A,B,C)	7.85(-4)	7.66(-4)
${}^{27}B_4^{-}$ (A,B,C)	7.14(-4)	6.97(-4)
${}^{36}A_1^{-}$ (A,B,C)	-7.14(-4)	-6.97(-4)
${}^{18}A_2^-$ (A,B,C)	-7.85(-4)	-7.66(-4)
${}^{18}A_2^{-}$ (A,B,C)	-9.45(-4)	-9.30(-4)
${}^{9}A_{4}^{-}$ (A,B,C)	-1.02(-3)	-9.98(-4)
1	12769.86	12796.66
$^{27}B_{4}^{+}$ (A,B,C)	2.69(-3)	2.67(-3)
${}^{54}B_2^+$ (A.B.C)	2.52(-3)	2.50(-3)
${}^{54}B_{2}^{+}$ (A,B,C)	2.44(-3)	2.41(-3)
${}^{108}B_1^{+}$ (A,B,C)	2.26(-3)	2.24(-3)
${}^{9}A_{4}^{+}$ (A,B,C)	-2.26(-3)	-2.24(-3)
$^{18}A_3^+$ (A,B,C)	-2.44(-3)	-2.41(-3)
$^{18}A_2^+$ (A,B,C)	-2.52(-3)	-2.50(-3)
${}^{36}A_1^{+}$ (A,B,C)	-2.69(-3)	-2.67(-3)
-		

Table 3 Analytic expressions for tunnelling energy levels of d^2 - and d^4 -trimer of each symmetry species in the G_{16} group, relative to the energy of the pseudorotational state, using tunnelling matrix elements in Table 3 of the main article and structure coefficients of pseudorotational states β_{A-C} (see text of the main article for details).

$E(A_{1}^{+}) =$	$+(\beta_{\rm A})^{2}h_{\rm AA}^{\rm B1} + (\beta_{\rm A})^{2}h_{\rm AA}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm C2} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A3} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B1} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B1} + (\beta_{\rm B})^{2}h_{$
	$+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(A_{2}^{+}) =$	$+(\beta_{\rm A})^{2}h_{\rm AA}^{\rm B1} + (\beta_{\rm A})^{2}h_{\rm AA}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B1} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^{2}h_{\rm B}^{\rm B3} + (\beta_{\rm B})^{2}h_{B$
	$-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(A_{3}^{+}) =$	$-(\beta_{\rm A})^2 h_{\rm AA}^{\rm B1} + (\beta_{\rm A})^2 h_{\rm AA}^{\rm B3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CB}^{\rm A3} + (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^2 h_{$
	$+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(A_{4}^{+}) =$	$-(\beta_{A})^{2}h_{AA}^{B1} + (\beta_{A})^{2}h_{AA}^{B3} - 2\beta_{A}\beta_{B}h_{AB}^{A2} + 2\beta_{A}\beta_{B}h_{AB}^{A3} - 2\beta_{A}\beta_{B}h_{BA}^{A1} - 2\beta_{A}\beta_{C}h_{AC}^{A1} + 2\beta_{A}\beta_{C}h_{CA}^{A2} - 2\beta_{A}\beta_{C}h_{BB}^{A3} - (\beta_{B})^{2}h_{BB}^{B1} - (\beta_{B})^{2}h_{BB}^$
× + /	$-2\beta_{\rm B}\beta_{\rm C}h_{\rm AC}^{\rm AC} - 2\beta_{\rm B}\beta_{\rm C}h_{\rm AC}^{\rm AC} + 2\beta_{\rm B}\beta_{\rm C}h_{\rm AC}^{\rm AC} + (\beta_{\rm C})^2h_{\rm BC}^{\rm BI} - (\beta_{\rm C})^2h_{\rm BC}^{\rm BI}$
$F(\mathbf{R}^+) =$	$+(B_{A})^{2}h^{B1} - (B_{A})^{2}h^{B3} + 2B_{A}B_{B}h^{A2} - 2B_{A}B_{B}h^{A3} + 2B_{A}B_{B}h^{A1} + 2B_{A}B_{C}h^{A1} - 2B_{A}B_{C}h^{A2} + 2B_{A}B_{C}h^{A3} + (B_{B})^{2}h^{B1} + (B_{B})^{2}h^{B3}$
$L(D_1) =$	$+ (PA) n_{AA} (PA) n_{AA} + 2PAPBn_{AB} - 2PAPBn_{AB} + 2PAPBn_{BA} + 2PAPCn_{AC} - 2PAPCn_{CA} + 2PAPCn_{CA} + (PB) n_{BB} + $
$\mathbf{r}(\mathbf{p}^{\pm})$	$+2\rho_{\rm B}\rho_{\rm C}n_{\rm BC} + 2\rho_{\rm B}\rho_{\rm C}n_{\rm BC} - 2\rho_{\rm B}\rho_{\rm C}n_{\rm CB} - (\rho_{\rm C})n_{\rm CC} + (\rho_{\rm$
$E(B_{2}^{+}) =$	$+(p_{A})^{2}h_{AA}^{2}-(p_{A})^{2}h_{AA}^{2}+2p_{A}p_{B}h_{AB}^{2}-2p_{A}p_{B}h_{AB}^{2}-2p_{A}p_{B}h_{BA}^{2}+2p_{A}p_{C}h_{CA}^{2}-2p_{A}p_{C}h_{CA}^{2}-2p_{A}p_{C}h_{CA}^{2}-(p_{B})^{2}h_{BB}^{2}+(p_{B})^{2}h_{BB}^{2}$
	$-2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A2} + 2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A3} - 2\beta_{\rm B}\beta_{\rm C}h_{\rm CB}^{\rm A1} - (\beta_{\rm C})^2h_{\rm CC}^{\rm C3} - (\beta_{\rm C})^2h_{\rm CC}^{\rm A3}$
$E(B_{3}^{+}) =$	$-(\beta_{\rm A})^2 h_{\rm AA}^{\rm B1} - (\beta_{\rm A})^2 h_{\rm AA}^{\rm B3} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm BA}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} + (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} - (\beta_{\rm B})^2 h_{\rm B3} - (\beta_{\rm B$
	$+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(B_4^+) =$	$-(\beta_{\rm A})^2 h_{\rm AA}^{\rm B1} - (\beta_{\rm A})^2 h_{\rm AA}^{\rm B3} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm BA}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} - (\beta_{\rm B})$
	$-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(A_1^-) =$	$-(\beta_{\rm A})^2 h_{\rm AA}^{\rm B1} - (\beta_{\rm A})^2 h_{\rm AA}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm BA}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C} h_{\rm CA}^{\rm A2} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} + \beta_{\rm B}^{\rm A3} + \beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + \beta_{\rm A}\beta_{\rm B} h_{\rm BB}^{\rm A3} + \beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + \beta_{\rm A}\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + \beta_{\rm A}\beta_{\rm A}\beta_{\rm B} h_{\rm AB}^{\rm A3} + \beta_{\rm A}\beta_{\rm $
	$+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(A_{2}^{-}) =$	$-(\beta_{\rm A})^2 h_{\rm AA}^{\rm B1} - (\beta_{\rm A})^2 h_{\rm AA}^{\rm B3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A3} + (\beta_{\rm B})^2 h_{\rm BB}^{\rm B1} - (\beta_{\rm B})^2 h_{\rm BB}^{\rm B3} - (\beta_{\rm B})^2 h_{$
	$-2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A2} - 2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A3} + 2\beta_{\rm B}\beta_{\rm C}h_{\rm CB}^{\rm A1} - (\beta_{\rm C})^2h_{\rm CC}^{\rm B1} + (\beta_{\rm C})^2h_{\rm CC}^{\rm B3}$
$E(A_{2}^{-}) =$	$+(\beta_{A})^{2}h_{AA}^{B1}-(\beta_{A})^{2}h_{AA}^{B3}-2\beta_{A}\beta_{B}h_{AB}^{A2}-2\beta_{A}\beta_{B}h_{AB}^{A3}+2\beta_{A}\beta_{B}h_{BA}^{A1}-2\beta_{A}\beta_{C}h_{AC}^{A1}+2\beta_{A}\beta_{C}h_{CA}^{A2}-2\beta_{A}\beta_{C}h_{CA}^{A3}-(\beta_{B})^{2}h_{BB}^{B1}+(\beta_{B})^{2}h_{BB}^{B3}-(\beta_{B})^{2}h_{BB}^{B1}+(\beta_{B})^{2}h_{BB}^{B1}-(\beta_{B})^{2}h_{BB}^{$
()/	$+2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A2}+2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A3}+2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A1}-(\beta_{\rm C})^2h_{\rm BC}^{\rm B1}-(\beta_{\rm C})^2h_{\rm BC}^{\rm B3}$
$E(A_{\perp}^{-}) =$	$+(\beta_{\rm A})^2 h_{\rm B1}^{\rm B1} - (\beta_{\rm A})^2 h_{\rm B2}^{\rm B3} - 2\beta_{\rm A} \beta_{\rm B} h_{\rm A2}^{\rm A2} - 2\beta_{\rm A} \beta_{\rm B} h_{\rm A2}^{\rm A3} - 2\beta_{\rm A} \beta_{\rm B} h_{\rm A1}^{\rm A3} - 2\beta_{\rm A} \beta_{\rm B} h_{\rm A1}^{\rm A1} - 2\beta_{\rm A} \beta_{\rm C} h_{\rm A1}^{\rm A2} + 2\beta_{\rm A} \beta_{\rm C} h_{\rm A2}^{\rm A2} + (\beta_{\rm B})^2 h_{\rm B1}^{\rm B1} + (\beta_{\rm B})^2 h_{\rm B1}^{\rm B3}$
2(14)	$-2\beta_{\rm B}\beta_{\rm C}h^{\rm A2}_{\rm A4} + 2\beta_{\rm B}\beta_{\rm C}h^{\rm A3}_{\rm A4} + 2\beta_{\rm B}\beta_{\rm C}h^{\rm A3}_{\rm A4} + (\beta_{\rm B})^{1}h_{\rm BB}^{\rm B} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B3}$
$F(\mathbf{R}^{-})$ —	$2p_{B}p_{C}n_{BC} + 2p_{B}p_{C}n_{BC} + 2p_{B}p_{C}n_{CB} + 2p_{B}p_{C}n_{CB} + (p_{C}) n_{CC} + (p_{C}) n$
$L(D_1) =$	$-(p_{A}) n_{AA} + (p_{A}) n_{AA} + 2p_{A}p_{B}n_{AB} + 2p_{A}p_{B}n_{AB} + 2p_{A}p_{B}n_{BA} + 2p_{A}p_{C}n_{AC} - 2p_{A}p_{C}n_{CA} - 2p_{A}p_{C}n_{CA} - (p_{B}) n_{BB} - (p_{B}) n_{BB}$ $+ 2p_{A}p_{C}n_{AC} - 2p_{A}p_{C}n_{CA} - (p_{B}) n_{BB} - (p_{B}) n_{BB} - (p_{B}) n_{BB}$
$\mathbf{r}(\mathbf{p}_{-})$	$+2p_{\rm B}p_{\rm C}n_{\rm BC}-2p_{\rm B}p_{\rm C}n_{\rm BC}-2p_{\rm B}p_{\rm C}n_{\rm CB}+(p_{\rm C})n_{\rm CC}-(p_{\rm C})n_{\rm CC}$
$E(B_2) =$	$-(p_A)^2 n_{AA}^2 + (p_A)^2 n_{AA}^2 + 2p_A p_B n_{AB}^2 + 2p_A p_B n_{AB}^2 - 2p_A p_B n_{BA}^2 + 2p_A p_C n_{AC}^2 - 2p_A p_C n_{CA}^2 + 2p_A p_C n_{CA}^2 + (p_B)^2 n_{BB}^2 - (p_B$
, .	$-2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A2} - 2\beta_{\rm B}\beta_{\rm C}h_{\rm BC}^{\rm A3} - 2\beta_{\rm B}\beta_{\rm C}h_{\rm CB}^{\rm A1} + (\beta_{\rm C})^2h_{\rm CC}^{\rm C3} + (\beta_{\rm C})^2h_{\rm CC}^{\rm B3}$
$E(B_3^-) =$	$+(\beta_{\rm A})^{2}h_{\rm AA}^{\rm D1} + (\beta_{\rm A})^{2}h_{\rm AA}^{\rm B3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A2} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A3} - (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B1} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^{2}h_{\rm B}^{\rm B3} + (\beta_{\rm B})^{2}h_{\rm B3} + (\beta_{\rm $
	$+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}-(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$
$E(B_4^-) =$	$+(\beta_{\rm A})^{2}h_{\rm AA}^{\rm B1} + (\beta_{\rm A})^{2}h_{\rm AA}^{\rm B3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm B}h_{\rm AB}^{\rm A3} - 2\beta_{\rm A}\beta_{\rm B}h_{\rm BA}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm AC}^{\rm A1} - 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A2} + 2\beta_{\rm A}\beta_{\rm C}h_{\rm CA}^{\rm A3} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B1} + (\beta_{\rm B})^{2}h_{\rm BB}^{\rm B3} + (\beta_{\rm B})^{2}h_{\rm B}^{\rm B3} + (\beta_{\rm B})^{2}h_{B$
	$-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A2}}+2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{BC}}^{\mathrm{A3}}-2\beta_{\mathrm{B}}\beta_{\mathrm{C}}h_{\mathrm{CB}}^{\mathrm{A1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B1}}+(\beta_{\mathrm{C}})^{2}h_{\mathrm{CC}}^{\mathrm{B3}}$

Table 4 Tunnelling-splitting pattern of HOD(H₂O)₂ on MB-pol PES $^{69-71}$ with regular and scaled flip matrix elements (see text of the main article for details). The energies are given relative to the pseudorotational states I1–I6 and O1–6, for isomers with D atom in and out of the H-bond, respectively. All energies are given in cm⁻¹. Symmetry labels are given in the first column and are explained in the text of the main article.

Table 5 Tunnelling-splitting pattern of HOD(D₂O)₂ on MB-pol PES $^{69-71}$ with regular and scaled flip matrix elements (see text of the main article for details). The energies are given relative to the pseudorotational states I1–I6 and O1–6, for isomers with H atom in and out of the H-bond, respectively. All energies are given in cm⁻¹. Symmetry labels are given in the first column and are explained in the text of the main article.

HOD(H ₂ O) ₂	regular	scaled
06	15430.46	15390.77
$^{18}A_b^-$ (2,4,6)	9.71(-4)	9.93(-4)
${}^{6}A_{a}^{-}$ (2,4,6)	5.26(-4)	4.74(-4)
${}^{54}B_b^-$ (2,4,6)	-5.26(-4)	-4.74(-4)
$B_a^{-10}B_a^{-}(2,4,6)$	$\frac{-9.1(-4)}{15405.15}$	-9.93(-4)
18 + 1 (2 + 1)	15405.15	15377.09
$^{18}A_b^+$ (2,4,6)	3.32(-3)	3.50(-3)
${}^{6}A_{a}^{+}$ (2,4,6)	9.85(-5)	-1.72(-5)
$^{18}B^+$ (2.4.6)	-9.87(-3) -3.32(-3)	-3.50(-3)
<u>I6</u>	15379.41	15335.33
6A - (1 2 5)	1.02(3)	0.03(1)
$^{18}A_{-}^{-}(1.3.5)$	3.90(-4)	4.03(-4)
${}^{18}B_a^-$ (1,3,5)	-3.90(-4)	-4.03(-4)
${}^{54}B_{h}^{-}$ (1,3,5)	-1.02(-3)	-9.94(-4)
04	15372.06	15360.43
$^{18}B_a^+$ (2,4,6)	2.45(-3)	2.51(-3)
${}^{6}A_{a}^{+}$ (2,4,6)	1.74(-3)	1.76(-3)
${}^{54}B_b^+$ (2,4,6)	-1.74(-3)	-1.76(-3)
$^{18}A_b^+$ (2,4,6)	-2.45(-3)	-2.51(-3)
I5	15335.67	15311.81
${}^{6}A^{+}_{a}$ (1,3,5)	6.40(-4)	6.12(-4)
${}^{18}B_a^+$ (1,3,5)	6.01(-4)	7.33(-4)
$^{16}A_b^+$ (1,3,5)	-6.00(-4)	-7.30(-4)
$B_{b}^{-1}(1,3,5)$	$\frac{-6.41(-4)}{15220.46}$	$\frac{-6.15(-4)}{15200.25}$
14 54 - ± (1 0 - 2)	15529.40	15309.25
$^{34}B_b^+$ (1,3,5)	1.57(-3)	1.56(-3)
$^{10}A_b^+$ (1,3,5) $^{18}B^+$ (1,3,5)	5.32(-4) 5.33(-4)	8.10(-4) 8.12(-4)
${}^{6}A^{+}(1,3,5)$	-3.33(-4) -1.57(-3)	-0.12(-4) -1.56(-3)
03	15322.57	15334.21
$^{6}A^{-}(2.4.6)$	1.90(-2)	1.89(-2)
${}^{18}B_a^-$ (2,4,6)	5.15(-3)	5.37(-3)
${}^{18}A_{b}^{-}$ (2,4,6)	-5.15(-3)	-5.37(-3)
${}^{54}B_b^{-}$ (2,4,6)	-1.90(-2)	-1.89(-2)
02	15285.61	15313.67
${}^{18}A_b^-$ (2,4,6)	5.36(-3)	5.56(-3)
${}^{6}A_{a}^{-}$ (2,4,6)	1.45(-3)	1.59(-3)
${}^{54}B_b^-$ (2,4,6)	-1.45(-3)	-1.59(-3)
$^{18}B_a^-$ (2,4,6)	-5.36(-3)	-5.56(-3)
01	15261.43	15301.13
$^{54}B_b^+$ (2,4,6)	2.28(-2)	2.23(-2)
$^{10}B_a^+$ (2,4,6) $^{18}A^+$ (2,4,6)	2.05(-3)	2.1/(-3) 2.17(-2)
$^{6}A^{+}(2,4,0)$	-2.03(-3) -2.28(-2)	-2.17(-3) -2.23(-2)
I3	15243.41	15263.62
64-(125)	1.81(2)	1.83(2)
$^{18}B^{-}$ (1.3.5)	1.60(-2)	1.60(-2)
${}^{18}A_{h}^{-}$ (1.3.5)	-1.61(-2)	-1.60(-2)
${}^{54}B_{b}^{-}$ (1,3,5)	-1.81(-2)	-1.83(-2)
I2	15234.10	15257.96
$^{18}A_{h}^{-}$ (1,3,5)	1.78(-2)	1.77(-2)
${}^{6}A_{a}^{-}$ (1,3,5)	1.41(-2)	1.40(-2)
${}^{54}B_b^-$ (1,3,5)	-1.42(-2)	-1.40(-2)
$^{18}B_a^-$ (1,3,5)	-1.78(-2)	-1.77(-2)
I1	15191.78	15235.86
${}^{54}B_b^+$ (1,3,5)	3.23(-2)	3.23(-2)
${}^{10}B_a^+$ (1,3,5)	2.05(-3)	2.22(-3)
$^{10}A_{b}$ (1,3,5)	-2.05(-3)	-2.22(-3)
A_a (1,3,3)	-3.23(-2)	-3.23(-2)

$HOD(D_2O)_2$	regular	scaled
I6	12523.60	12502.42
$^{216}A_a^-$ (1,3,5)	7.29(-6)	7.55(-6)
$^{108}B_a^-$ (1,3,5)	2.81(-6)	3.17(-6)
$^{108}A_b^-$ (1,3,5)	-2.81(-6)	-3.17(-6)
$^{34}B_b^-$ (1,3,5)	-7.29(-6)	-7.55(-6)
15	12502.87	12491.03
$^{108}A_b^+$ (1,3,5)	5.51(-6)	5.86(-6)
$^{216}A^+$ (1,3,5)	3.32(-6)	3.30(-6)
$^{108}B^+$ (1,3,5)	-5.52(-6)	-5.30(-6)
I4	12499.42	12490.08
$^{216}A^+$ (1 3 5)	2.65(-5)	2.62(-5)
$^{108}B_{-}^{+}$ (1.3.5)	6.78(-6)	8.49(-6)
${}^{108}A_{h}^{+}$ (1,3,5)	-6.78(-6)	-8.49(-6)
${}^{54}B_b^+$ (1,3,5)	-2.65(-5)	-2.62(-5)
06	12474.97	12447.72
$^{108}B_a^-$ (2,4,6)	1.14(-5)	1.16(-5)
$^{216}A_a^-$ (2,4,6)	1.09(-5)	1.08(-5)
${}^{54}B_b^-$ (2,4,6)	-1.09(-5)	-1.08(-5)
$\frac{108A_b^-}{2}$ (2,4,6)	-1.14(-5)	-1.16(-5)
05	12460.32	12439.57
${}^{54}B_b^+$ (2,4,6)	2.32(-5)	2.30(-5)
$^{108}B_a^+$ (2,4,6)	3.06(-6)	3.60(-6)
$^{210}A_b^+$ (2,4,6)	-3.06(-6)	-3.60(-6)
$\frac{A_a}{I3}$	$\frac{-2.32(-3)}{12459.66}$	$\frac{-2.30(-3)}{12469.00}$
108A^{-} (1.2 E)	6.07(5)	6.06(5)
$^{216}A^{-}(1,3,5)$	2.97(-3)	2.96(-5)
${}^{54}B_{1}^{-}$ (1.3.5)	-2.96(-5)	-2.96(-5)
${}^{108}B_a^{-}$ (1,3,5)	-6.97(-5)	-6.96(-5)
I2	12452.35	12464.19
$^{216}A_{a}^{-}$ (1,3,5)	8.77(-5)	8.75(-5)
${}^{108}B_a^-$ (1,3,5)	7.96(-5)	7.91(-5)
$^{108}A_b^-$ (1,3,5)	-7.96(-5)	-7.91(-5)
$5^{54}B_b^-$ (1,3,5)	-8.77(-5)	-8.75(-5)
11	12433.32	12454.50
$^{54}B_b^+$ (1,3,5)	1.48(-4)	1.48(-4)
$^{108}A_b^+$ (1,3,5) $^{108}B_b^+$ (1,2,5)	1.40(-5)	1.53(-5)
$^{216}B_a^+$ (1,3,5) $^{216}A^+$ (1,3,5)	-1.40(-3) -1.48(-4)	-1.33(-3) -1.48(-4)
04	12433.11	12426.60
216_{4} + (2.4.6)	282(-5)	2 67(-5)
$^{108}B^+$ (2.4.6)	1.44(-5)	1.58(-5)
${}^{108}A_{h}^{+}$ (2,4,6)	-1.44(-5)	-1.58(-5)
${}^{54}B_b^+$ (2,4,6)	-2.82(-5)	-2.67(-5)
O3	12405.25	12411.76
$^{108}A_{b}^{-}$ (2,4,6)	5.33(-5)	5.51(-5)
$^{216}A_a^-$ (2,4,6)	5.05(-5)	5.09(-5)
$^{54}B_b^-$ (2,4,6)	-5.05(-5)	-5.09(-5)
$\frac{108B_a^-(2,4,6)}{2}$	$\frac{-5.33(-5)}{12271.00}$	$\frac{-5.51(-5)}{12202.74}$
216 4 - (2, 4, 6)	12371.99	12392.74
$^{10}A_a^-$ (2,4,6) $^{108}B_a^-$ (2,4,6)	1.4/(-4) 5.71(-5)	1.46(-4)
D_a (2,4,0) $108A_{-}^{-}$ (2,4,6)	-5.71(-5)	-5.88(-5)
${}^{54}B_{1}^{-}$ (2.4.6)	-1.47(-4)	-1.46(-4)
01	12358.78	12386.04
${}^{54}B_{\rm h}^+$ (2.4.6)	2.13(-4)	2.12(-4)
$^{108}A_{h}^{+}$ (2,4,6)	3.27(-5)	3.46(-5)
$^{108}B_a^+$ (2,4,6)	-3.27(-5)	-3.46(-5)
$^{216}A_a^+$ (2,4,6)	-2.13(-4)	-2.12(-4)

Table 6 Analytic expressions for tunnelling energy levels of d_1 - and d_5 -trimer of each symmetry species in the G_8 group, relative to the energy of the pseudorotational state, using tunnelling matrix elements in Table 4 of the main article and structure coefficients of pseudorotational states β_{1-6} (see text of the main article for details).

$E(A_a^+) =$	$+(\beta_1)^2 h_{11}^{B1} + 2\beta_1 \beta_3 h_{13}^{A2} + 2\beta_1 \beta_3 h_{31}^{A1} + 2\beta_1 \beta_5 h_{15}^{A1} + 2\beta_1 \beta_5 h_{51}^{A3} + (\beta_3)^2 h_{33}^{B1} + (\beta_3)^2 h_{33}^{B3} + 2\beta_3 \beta_5 h_{35}^{A2} + 2\beta_3 \beta_5 h_{35}^{A3} + (\beta_5)^2 h_{55}^{B1} + (\beta_5)^2 h_{55$
$E(A_b^+) =$	$-(\beta_1)^2 h_{11}^{B1} - 2\beta_1 \beta_3 h_{13}^{A2} + 2\beta_1 \beta_3 h_{31}^{A1} - 2\beta_1 \beta_5 h_{15}^{A1} + 2\beta_1 \beta_5 h_{51}^{A3} + (\beta_3)^2 h_{33}^{B1} - (\beta_3)^2 h_{33}^{B3} + 2\beta_3 \beta_5 h_{35}^{A2} - 2\beta_3 \beta_5 h_{35}^{A3} + (\beta_5)^2 h_{51}^{B1} + (\beta_3)^2 h_{33}^{B1} - (\beta_3)^2 h_{33}^{B1} + (\beta_3)^2 h_{33$
$E(B_a^+) =$	$+(\beta_{1})^{2}h_{11}^{B1}+2\beta_{1}\beta_{3}h_{13}^{A2}-2\beta_{1}\beta_{3}h_{31}^{A1}+2\beta_{1}\beta_{5}h_{15}^{A1}-2\beta_{1}\beta_{5}h_{51}^{A3}-(\beta_{3})^{2}h_{33}^{B1}+(\beta_{3})^{2}h_{33}^{B3}-2\beta_{3}\beta_{5}h_{35}^{A2}+2\beta_{3}\beta_{5}h_{35}^{A3}-(\beta_{5})^{2}h_{51}^{B3}-(\beta_{5})^{2}h_{51}^{$
$E(B_b^+) =$	$-(\beta_1)^2 h_{11}^{\text{B1}} - 2\beta_1 \beta_3 h_{13}^{\text{A2}} - 2\beta_1 \beta_3 h_{31}^{\text{A1}} - 2\beta_1 \beta_5 h_{15}^{\text{A1}} - 2\beta_1 \beta_5 h_{51}^{\text{A3}} - (\beta_3)^2 h_{33}^{\text{B1}} - (\beta_3)^2 h_{33}^{\text{B3}} - 2\beta_3 \beta_5 h_{35}^{\text{A2}} - 2\beta_3 \beta_5 h_{35}^{\text{A3}} - (\beta_5)^2 h_{55}^{\text{B1}} - (\beta_5)^2 h_{5$
$E(A_a^-) =$	$-(\beta_1)^2 h_{11}^{\text{B1}} + 2\beta_1 \beta_3 h_{13}^{\text{A2}} + 2\beta_1 \beta_3 h_{31}^{\text{A1}} + 2\beta_1 \beta_5 h_{15}^{\text{A1}} - 2\beta_1 \beta_5 h_{51}^{\text{A3}} - (\beta_3)^2 h_{33}^{\text{B1}} - (\beta_3)^2 h_{33}^{\text{B3}} + 2\beta_3 \beta_5 h_{35}^{\text{A2}} - 2\beta_3 \beta_5 h_{35}^{\text{A3}} - (\beta_5)^2 h_{51}^{\text{B3}} - (\beta_5)^2 h_{5$
$E(A_b^-) =$	$+(\beta_{1})^{2}h_{11}^{B1}-2\beta_{1}\beta_{3}h_{13}^{A2}+2\beta_{1}\beta_{3}h_{31}^{A1}-2\beta_{1}\beta_{5}h_{15}^{A1}-2\beta_{1}\beta_{5}h_{51}^{A3}-(\beta_{3})^{2}h_{33}^{B1}+(\beta_{3})^{2}h_{33}^{B3}+2\beta_{3}\beta_{5}h_{35}^{A2}+2\beta_{3}\beta_{5}h_{35}^{A3}-(\beta_{5})^{2}h_{51}^{B3}-(\beta_{5})^{2}h_{51}^{B3}-(\beta_{5})^{2}h_{51}^{B3}+(\beta_{5})^{2}h_{53}^{B3}+2\beta_{5}\beta_{5}h_{35}^{A2}+2\beta_{5}\beta_{5}h_{35}^{A3}-(\beta_{5})^{2}h_{51}^{B3}-(\beta_{5})^{2}h_{53}^{B3}+(\beta_{5})^{2}h_{53}^{$
$E(B_a^-) =$	$-(\beta_1)^2 h_{11}^{\text{B1}} + 2\beta_1 \beta_3 h_{13}^{\text{A2}} - 2\beta_1 \beta_3 h_{31}^{\text{A1}} + 2\beta_1 \beta_5 h_{15}^{\text{A1}} + 2\beta_1 \beta_5 h_{51}^{\text{A3}} + (\beta_3)^2 h_{33}^{\text{B1}} - (\beta_3)^2 h_{33}^{\text{B3}} - 2\beta_3 \beta_5 h_{35}^{\text{A2}} - 2\beta_3 \beta_5 h_{35}^{\text{A3}} + (\beta_5)^2 h_{55}^{\text{B1}} + (\beta_5)^2 h_{5$
$E(B_b^-) =$	$+(\beta_1)^2 h_{11}^{\text{B1}} - 2\beta_1\beta_3 h_{13}^{\text{A2}} - 2\beta_1\beta_3 h_{31}^{\text{A1}} - 2\beta_1\beta_5 h_{15}^{\text{A1}} + 2\beta_1\beta_5 h_{51}^{\text{A3}} + (\beta_3)^2 h_{33}^{\text{B1}} + (\beta_3)^2 h_{33}^{\text{B3}} - 2\beta_3\beta_5 h_{35}^{\text{A2}} + 2\beta_3\beta_5 h_{35}^{\text{A3}} + (\beta_5)^2 h_{55}^{\text{B1}} + (\beta_3)^2 h_{33}^{\text{B1}} + (\beta_3)^2 h_{33}^{$