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Experimental Data of Diffusion NMR and Electrophoretic NMR for the different LiFSI / G4 
mixtures

Figure S1: Signal attenuation  observed in 1H, 7Li and 19F PFG-NMR experiments a) for the 𝐼/𝐼0

LiFSI / G4 1:1 mixture and b) for the LiFSI / G4 1:2 mixture.

The data of the 7Li and 1H signal exhibit the same slope for the LiFSI / G4 1:1 mixture (Fig. S1a), 
whereas the slopes differ for the LiFSI / G4 1:2 mixture (Fig. S1b). Thus, the self-diffusion 
coefficients of 7Li and 1H for the LiFSI / G4 1:1 are identical. For the LiFSI / G4 1:2 mixture the 
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G4 diffusion coefficient is a fast exchange average of G4 coordinated to Li, and free G4, thus 
it differs from the diffusion coefficient of the Li+ ion.

Figure S2: Voltage  dependent reduced phase shift values  𝑈 (𝜙 ‒ 𝜙0)𝑑𝛾 ‒ 1𝐺 ‒ 1𝛿 ‒ 1Δ ‒ 1

observed via 1H, 7Li and 19F eNMR a) for the LiFSI / G4 1:1 mixture and b) for the LiFSI / G4 1:2 
mixture.

The observed 1H phase shift values and their slope describe the G4 movement, exhibiting the 
same slope and mobility as 7Li for the LiFSI / G4 1:1 mixture (Fig. S2a). This is in agreement 
with the observation of identical diffusion coefficients. For the LiFSI / G4 1:2 mixture (Fig. S2b) 
a deviation for the slopes can be observed, which is again a consequence of the fast exchange 
average giving the G4 mobility.

Thermodynamic factor for the LiTFSI / G4 1:1 mixture and different LiFSI / G4 mixtures

Figure S3: Thermodynamic factors for the different electrolyte mixtures.
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Derivation of Eqs. [35a-c] 

We start with Eqs. [33a], [33b], [34a], and [34b]:

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(∆𝑥 +
𝑖 )] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(∆𝑥 ‒
𝑖 )] = 𝐴 ∙ 𝑥0 ∙ 𝑁 [33a]

𝑁/2

∑
𝑖 = 1

(∆𝑥 +
𝑖 ) ‒

𝑁/2

∑
𝑖 = 1

(∆𝑥 ‒
𝑖 ) = 𝐵 ∙ 𝑥0 ∙ 𝑁 [33b]

∆𝑥 +
𝑖 = 𝑥0 ∙ (𝑔𝑖 + 𝑎 +

𝑖 ∙ 𝐴 + 𝑏 +
𝑖 ∙ 𝐵) [34a]

∆𝑥 ‒
𝑖 = 𝑥0 ∙ (𝑔𝑖 + 𝑎 ‒

𝑖 ∙ 𝐴 + 𝑏 ‒
𝑖 ∙ 𝐵) [34b]

First, Eqs. [34a] and [34b] are inserted into Eq. [33a] resulting in:

1
1 + 𝑘

𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)] +
𝑘

1 + 𝑘

𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 ‒
𝑖 ∙ 𝐴 + 𝑏 ‒

𝑖 ∙ 𝐵)]
= 𝐴 ∙ 𝑥0 ∙ 𝑁

[S1]

Since  denotes a displacement distribution function with mean  (averaged over all 𝑔𝑖 𝑔𝑖 = 0

ions), Eq. [S1] can be rewritten as:

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ∙ 𝐴) +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ∙ 𝐵)] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ∙ 𝐴) +

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ∙ 𝐵)] = 𝐴 ∙ 𝑁 [S2]

From Eq. [S2] it follows that:

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )] = 0 [S3]

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )] = 𝑁 [S4]

Next, we insert Eqs. [34a] and [34b] into Eq. [33b]:

𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)] ‒
𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 ‒
𝑖 ∙ 𝐴 + 𝑏 ‒

𝑖 ∙ 𝐵)] = 𝐵 ∙ 𝑥0 ∙ 𝑁 [S5]
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With , Eq. [S5] can be rewritten as:𝑔𝑖 = 0

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ∙ 𝐴) +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ∙ 𝐵) ‒

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ∙ 𝐴) ‒

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ∙ 𝐵) = 𝐵 ∙ 𝑁 [S6]

From Eq. [S6], it follows that: 

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ) ‒

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ) = 0     ⟹     

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ) =

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ) [S7]

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ) ‒

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ) = 𝑁 [S8]

Now, insertion of Eq. [S7] into Eq. [S4] leads to:

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )] =

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ) = 𝑁 [S9]

The same is valid for , thus Eq. [35a] can be written as:

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ) =

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ) = 𝑁 [35a]

Next, we rewrite Eq. [S8] as:

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ) =

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ) ‒ 𝑁 [S10]

and we insert Eq. [S10] into Eq. [S3]:

1
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )] +

𝑘
1 + 𝑘[ 𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ) ‒ 𝑁] = 0 [S11]

From Eq. [S11], we obtain Eq. [35b]:

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ) =

𝑘
1 + 𝑘

∙ 𝑁 [35b]
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Finally, Eq. [35b] is inserted into Eq. [S10] leading to Eq. [35c].

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ) =

𝑘
1 + 𝑘

∙ 𝑁 ‒ 𝑁 =‒
1

1 + 𝑘
∙ 𝑁 [35c]

Derivation of  – Eq. [36a]𝜎𝑠𝑒𝑙𝑓
+

We start with inserting Eq. [34a] into Eq. [S12]:

∆𝑥 +
𝑖 = 𝑥0 ∙ (𝑔𝑖 + 𝑎 +

𝑖 ∙ 𝐴 + 𝑏 +
𝑖 ∙ 𝐵) [34a]

𝜎𝑠𝑒𝑙𝑓
+ =

𝑒2

2𝑉𝑘𝐵𝑇∆𝑡⟨� 𝑁/2

∑
𝑖 = 1

(∆𝑥 +
𝑖 )2⟩� = 𝑒2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨� 𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)]2⟩� [S12]

Here, the brackets  denote the ensemble average. In the following, we assume that center-〈…〉
of-mass and dipole fluctuations are uncorrelated, implying that . With 〈𝐴𝐵〉 = 〈𝐴〉 ∙ 〈𝐵〉 = 0

,  and , it follows that:𝑔𝑖 = 0 〈𝐴〉 = 0 〈𝐵〉 = 0

𝜎𝑠𝑒𝑙𝑓
+ =

𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨ 𝑁/2

∑
𝑖 = 1

(𝑔𝑖)2 � + 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ∙ 𝐴)2 + � 𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ∙ 𝐵)2⟩ [S13]

With  and thus the sum  being identical to , Eq. [S13] can be written as:(𝑔𝑖)2 = 1

𝑁/2

∑
𝑖 = 1

(𝑔𝑖)2

𝑁/2

𝜎𝑠𝑒𝑙𝑓
+ =

𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ [𝑁

2
+

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2 ∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2 ∙ 〈𝐵2〉] [S14]

With the number density  and the prefactor , we finally obtain 
𝑁𝑣 =

𝑁/2
𝑉

𝜎0 =
𝑁𝑣 ∙ 𝑒2 ∙ (𝑥0)2

2 ∙ 𝑘𝐵 ∙ 𝑇 ∙ ∆𝑡

Eq. [36a]:
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𝜎𝑠𝑒𝑙𝑓
+ = 𝜎0 ∙ (1 +

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

〈𝐵2〉) [36a]

Derivation of  – Eq. [36b]𝜎 ++

We start with inserting Eq. [34a] into Eq. [31a], giving [S15].

∆𝑥 +
𝑖 = 𝑥0 ∙ (𝑔𝑖 + 𝑎 +

𝑖 ∙ 𝐴 + 𝑏 +
𝑖 ∙ 𝐵) [34a]

𝜎 ++ =
𝑒2

2𝑉𝑘𝐵𝑇∆𝑡⟨�( 𝑁/2

∑
𝑖 = 1

∆𝑥 +
𝑖 )2⟩� [31a]

𝜎 ++ =
𝑒2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨�( 𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)])2⟩� [S15]

Since , the sum  cancels, and Eq. [S16] is obtained.𝑔𝑖 = 0 [ 𝑁/2

∑
𝑖 = 1

𝑔𝑖]2

𝜎 ++ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨�( 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ∙ 𝐴) +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ∙ 𝐵))2⟩� [S16]

With Eqs. [35a] and [35b], this results in:

𝜎 ++ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨�( 𝑁 ∙ 𝐴 +

𝑘
1 + 𝑘

∙ 𝑁 ∙ 𝐵)2⟩� [S17]

With , this leads to Eq. [36b]:〈𝐴𝐵〉 = 〈𝐴〉 ∙ 〈𝐵〉 = 0

𝜎 ++ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ (𝑁〈𝐴2〉 + 𝑁

𝑘2

(1 + 𝑘)2〈𝐵2〉) = 𝜎0 ∙ (2〈𝐴2〉 + 2
𝑘2

(1 + 𝑘)2〈𝐵2〉) [36b]
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Derivation of  – Eq. [36c]𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++

We start with

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ =  𝜎 ++ ‒  𝜎𝑠𝑒𝑙𝑓

+ [S18]

derived from Eq. [20] and insert Eqs. [36a] and [36b]:

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ = 𝜎0 ∙ [ 2〈𝐴2〉 + 2

𝑘2

(1 + 𝑘)2〈𝐵2〉 ‒

(1 +

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

〈𝐵2〉)] [S19]

After resorting the terms, Eq. [36c] is obtained.

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++ = 𝜎0 ∙ [ ‒ 1 + (2 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

)〈𝐴2〉 +

(2
𝑘2

(1 + 𝑘)2
‒

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

)〈𝐵2〉 ] [36c]

Derivation of  – Eq. [36d]𝜎𝑠𝑒𝑙𝑓
‒
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Analoguous to the derivation of , insertion of 𝜎𝑠𝑒𝑙𝑓
+

∆𝑥 ‒
𝑖 = 𝑥0 ∙ (𝑔𝑖 + 𝑎 ‒

𝑖 ∙ 𝐴 + 𝑏 ‒
𝑖 ∙ 𝐵) [34b]

Into

𝜎𝑠𝑒𝑙𝑓
‒ =

𝑒2

2𝑉𝑘𝐵𝑇∆𝑡⟨� 𝑁/2

∑
𝑖 = 1

(∆𝑥 ‒
𝑖 )2⟩� [S20]

gives Eq. [36d]:

𝜎𝑠𝑒𝑙𝑓
‒ = 𝜎0 ∙ (1 +

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

〈𝐵2〉) [36d]

Derivation of  – Eq. [36e]𝜎 ‒‒

Insertion of Eqs. [34b], [35a] and [35c] into

𝜎 ‒‒ =
𝑒2

2𝑉𝑘𝐵𝑇∆𝑡⟨�( 𝑁/2

∑
𝑖 = 1

∆𝑥 ‒
𝑖 )2⟩� [31b]

results in Eq. [36e]:

𝜎 ‒‒ = 𝜎0 ∙ (2〈𝐴2〉 + 2
1

(1 + 𝑘)2〈𝐵2〉) [36e]

Derivation of  – Eq. [36f]𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒

Insertion of Eqs. [36d] and [36e] into 

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒ = 𝜎 ‒‒ ‒ 𝜎𝑠𝑒𝑙𝑓

‒ [S21]

derived from Eq. [21] and resorting the terms results in Eq. [36f]:
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𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒ = 𝜎0 ∙ [ ‒ 1 + (2 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

)〈𝐴2〉 +

(2
1

(1 + 𝑘)2
‒

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

)〈𝐵2〉 ] [36f]

Derivation of  – Eq. [36g]𝜎 +‒

Insertion of Eqs. [34a] and [34b] into Eq. [31c]

𝜎 +‒ =
𝑒2

2𝑉𝑘𝐵𝑇∆𝑡⟨�( 𝑁/2

∑
𝑖 = 1

∆𝑥 +
𝑖 ) ∙ ( 𝑁/2

∑
𝑖 = 1

∆𝑥 ‒
𝑖 )⟩� [31c]

gives:

𝜎 +‒ =
𝑒2

2𝑉𝑘𝐵𝑇∆𝑡
∙

⟨�( 𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)]) ∙ ( 𝑁/2

∑
𝑖 = 1

[𝑥0 ∙ (𝑔𝑖 + 𝑎 ‒
𝑖 ∙ 𝐴 + 𝑏 ‒

𝑖 ∙ 𝐵)])⟩� [S22]

With this transforms into:𝑔𝑖 = 0, 

𝜎 +‒ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ ⟨�( 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ∙ 𝐴 + 𝑏 +

𝑖 ∙ 𝐵)) ∙ ( 𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ∙ 𝐴 + 𝑏 ‒

𝑖 ∙ 𝐵))⟩� [S23]

With , this simplifies to:〈𝐴𝐵〉 = 〈𝐴〉 ∙ 〈𝐵〉 = 0

𝜎 +‒ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ [( 𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 ) ∙

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 ))〈𝐴2〉 + ( 𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 ) ∙

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 ))〈𝐵2〉] [S24]

Insertion of Eqs. [35a]-[35c] results in [36g]:
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𝜎 +‒ =
𝑒2 ∙ (𝑥0)2

2𝑉𝑘𝐵𝑇∆𝑡
∙ (𝑁〈𝐴2〉 ‒ 𝑁

𝑘

(1 + 𝑘)2〈𝐵2〉) = 𝜎0 ∙ (2〈𝐴2〉 ‒ 2
𝑘

(1 + 𝑘)2〈𝐵2〉) [36g]

Derivation of  – Eq. [36h]𝜎𝑖𝑜𝑛

Insertion of Eqs. [36b], [36e], and [36g] into Eq. [12]

𝜎𝑖𝑜𝑛 = 𝜎 ++ + 𝜎 ‒‒ ‒ 2𝜎 +‒ [12]
results in:

𝜎𝑖𝑜𝑛 = 𝜎0 ∙ (2〈𝐴2〉 + 2
𝑘2

(1 + 𝑘)2〈𝐵2〉) + 𝜎0 ∙ (2〈𝐴2〉 + 2
1

(1 + 𝑘)2〈𝐵2〉) ‒

2𝜎0 ∙ (2〈𝐴2〉 ‒ 2
𝑘

(1 + 𝑘)2〈𝐵2〉)
[S25]

This simplifies to Eq. [36h]: 
𝜎𝑖𝑜𝑛 = 𝜎0 ∙ 2 ∙ 〈𝐵2〉 [36h]

Derivation of  – Eq. [37a]𝑡 𝜇
+ ∙ 𝜎𝑖𝑜𝑛

We start with 

𝑡 𝜇
+ ∙ 𝜎𝑖𝑜𝑛 = 𝜎 ++ ‒ 𝜎 +‒ [S26]

derived from Eq. [14] and insert Eqs. [36b] and [36g]:

𝑡 𝜇
+ ∙ 𝜎𝑖𝑜𝑛 = 𝜎0 ∙ (2〈𝐴2〉 + 2

𝑘2

(1 + 𝑘)2〈𝐵2〉) ‒ 𝜎0 ∙ (2〈𝐴2〉 ‒ 2
𝑘

(1 + 𝑘)2〈𝐵2〉)
= 𝜎0 ∙ 2 ∙

𝑘
1 + 𝑘

∙ 〈𝐵2〉
[37a]

Derivation of  – Eq. [37b](1 ‒ 𝑡 𝜇
+ ) ∙ 𝜎𝑖𝑜𝑛

We start with 
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(1 ‒ 𝑡 𝜇
+ ) ∙ 𝜎𝑖𝑜𝑛 = 𝜎 ‒‒ ‒ 𝜎 +‒ [S27]

and insert Eqs. [36e] and [36g]:

(1 ‒ 𝑡 𝜇
+ ) ∙ 𝜎𝑖𝑜𝑛 =

𝜎0 ∙ (2〈𝐴2〉 + 2
1

(1 + 𝑘)2〈𝐵2〉) ‒ 𝜎0 ∙ (2〈𝐴2〉 ‒ 2
𝑘

(1 + 𝑘)2〈𝐵2〉)
= 𝜎0 ∙ 2 ∙

1
1 + 𝑘

∙ 〈𝐵2〉

[37b]

Derivation of  – Eq. [39]𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛

We start with

𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 = 𝜎 ++ ‒

(𝜎 +‒ )2

𝜎 ‒‒
[S28]

derived from Eq. [13] and insert Eqs. [36b], [36e], and [36g]:

𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 = 𝜎0 ∙ 2 ∙ [〈𝐴2〉 +

𝑘2

(1 + 𝑘)2〈𝐵2〉 ‒
(〈𝐴2〉 ‒

𝑘

(1 + 𝑘)2〈𝐵2〉)2

〈𝐴2〉 +
1

(1 + 𝑘)2〈𝐵2〉 ] [38]

In the case of , the term  from the expansion of 
〈𝐴2〉 ≪

𝑘

(1 + 𝑘)2〈𝐵2〉
〈𝐴2〉2

 can be neglected, resulting in:
(〈𝐴2〉 ‒

𝑘

(1 + 𝑘)2〈𝐵2〉)2

𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 ≈ 𝜎0 ∙ 2 ∙ [〈𝐴2〉 +

𝑘2

(1 + 𝑘)2〈𝐵2〉 +

2𝑘

(1 + 𝑘)2〈𝐴2〉〈𝐵2〉 ‒
𝑘2

(1 + 𝑘)4〈𝐵2〉2

〈𝐴2〉 +
1

(1 + 𝑘)2〈𝐵2〉 ] [S29]

In the right-hand term, the terms  and  are factored out in the 
‒

𝑘2

(1 + 𝑘)4〈𝐵2〉2 1

(1 + 𝑘)2〈𝐵2〉

numerator and in the denominator, respectively:
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𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 ≈ 𝜎0 ∙ 2 ∙ [ 〈𝐴2〉 +

𝑘2

(1 + 𝑘)2〈𝐵2〉 +

(1 ‒
2(1 + 𝑘)2

𝑘
∙

〈𝐴2〉
〈𝐵2〉)

(1 + (1 + 𝑘)2 ∙
〈𝐴2〉
〈𝐵2〉)

∙
( ‒

𝑘2

(1 + 𝑘)4〈𝐵2〉2)
( 1

(1 + 𝑘)2〈𝐵2〉) ]
= 𝜎0 ∙ 2 ∙ [〈𝐴2〉 +

𝑘2

(1 + 𝑘)2〈𝐵2〉 +
(1 ‒

2(1 + 𝑘)2

𝑘
∙

〈𝐴2〉
〈𝐵2〉)

(1 + (1 + 𝑘)2 ∙
〈𝐴2〉
〈𝐵2〉)

∙ ( ‒
𝑘2

(1 + 𝑘)2〈𝐵2〉)]
[S30]

Since , we apply the approximation :〈𝐴2〉 ≪ 〈𝐵2〉
1 ‒ 𝑥1

1 + 𝑥2
≈ 1 ‒ 𝑥1 ‒ 𝑥2

𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 ≈  

𝜎0 ∙ 2 ∙ [ 〈𝐴2〉 +
𝑘2

(1 + 𝑘)2〈𝐵2〉 +

(1 ‒
2(1 + 𝑘)2

𝑘
∙

〈𝐴2〉
〈𝐵2〉

‒ (1 + 𝑘)2 ∙
〈𝐴2〉
〈𝐵2〉) ∙ ( ‒

𝑘2

(1 + 𝑘)2〈𝐵2〉)]
= 𝜎0 ∙ 2 ∙ [ 〈𝐴2〉 +

𝑘2

(1 + 𝑘)2〈𝐵2〉 ‒

𝑘2

(1 + 𝑘)2〈𝐵2〉 +
2𝑘2(1 + 𝑘)2

𝑘(1 + 𝑘)2
∙

〈𝐴2〉〈𝐵2〉
〈𝐵2〉

+
𝑘2(1 + 𝑘)2

(1 + 𝑘)2
∙

〈𝐴2〉〈𝐵2〉
〈𝐵2〉

]
= 𝜎0 ∙ 2 ∙ [〈𝐴2〉 + 2𝑘〈𝐴2〉 + 𝑘2〈𝐴2〉]

[S31]

Thus, we finally obtain Eq. [39]:

𝑡𝑎𝑏𝑐
+ ∙ 𝜎𝑖𝑜𝑛 ≈ 𝜎0 ∙ 2 ∙ (1 + 𝑘)2 ∙ 〈𝐴2〉 [39]

Derivation of  – Eq. [40a]

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++

𝜎𝑠𝑒𝑙𝑓
+
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We divide Eq. [36c] by Eq. [36a]:

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++

𝜎𝑠𝑒𝑙𝑓
+

=

𝜎0 ∙ [ ‒ 1 + (2 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

)〈𝐴2〉 + (2
𝑘2

(1 + 𝑘)2
‒

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

)〈𝐵2〉]
𝜎0 ∙ (1 +

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

〈𝐵2〉)
=

‒ 1 + 2〈𝐴2〉 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

〈𝐴2〉 + 2
𝑘2

(1 + 𝑘)2〈𝐵2〉 ‒

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

〈𝐵2〉

1 +

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁
2

〈𝐵2〉

[S32]

Now we assume that the fluctuations are small so that  and 

𝑁/2

∑
𝑖 = 1

(𝑎 +
𝑖 )2

𝑁/2
∙ 〈𝐴2〉 ≪ 1

. In this case, we can apply the approximation resulting in 

𝑁/2

∑
𝑖 = 1

(𝑏 +
𝑖 )2

𝑁/2
〈𝐵2〉 ≪ 1

1
1 + 𝑥

≈ 1 ‒ 𝑥, 

Eq. [40a]:

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
++

𝜎𝑠𝑒𝑙𝑓
+

≈‒ 1 + 2〈𝐴2〉 + 2
𝑘2

(1 + 𝑘)2〈𝐵2〉 [40a]
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Derivation of  – Eq. [40b]

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒

𝜎𝑠𝑒𝑙𝑓
‒

We divide Eq. [36f] by Eq. [36d]:

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒

𝜎𝑠𝑒𝑙𝑓
‒

=

𝜎0 ∙ [ ‒ 1 + (2 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

)〈𝐴2〉 + (2
1

(1 + 𝑘)2
‒

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

)〈𝐵2〉]
𝜎0 ∙ (1 +

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

〈𝐵2〉)
=

‒ 1 + 2〈𝐴2〉 ‒

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

〈𝐴2〉 + 2
1

(1 + 𝑘)2〈𝐵2〉 ‒

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

〈𝐵2〉

1 +

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁
2

∙ 〈𝐴2〉 +

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁
2

〈𝐵2〉

[S33]
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Again we assume that the fluctuations are small so that  and 

𝑁/2

∑
𝑖 = 1

(𝑎 ‒
𝑖 )2

𝑁/2
∙ 〈𝐴2〉 ≪ 1

. In this case, the approximation results in Eq. [40b]:

𝑁/2

∑
𝑖 = 1

(𝑏 ‒
𝑖 )2

𝑁/2
〈𝐵2〉 ≪ 1

1
1 + 𝑥

≈ 1 ‒ 𝑥 

𝜎𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡
‒‒

𝜎𝑠𝑒𝑙𝑓
‒

≈‒ 1 + 2〈𝐴2〉 + 2
1

(1 + 𝑘)2〈𝐵2〉 [40b]


