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Experimental Data of Diffusion NMR and Electrophoretic NMR for the different LiFSI / G4

mixtures
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Figure S1: Signal attenuation I71y observed in 1H, “Li and °F PFG-NMR experiments a) for the
LiFSI / G4 1:1 mixture and b) for the LiFSI / G4 1:2 mixture.

The data of the ’Li and *H signal exhibit the same slope for the LiFSI / G4 1:1 mixture (Fig. S1a),
whereas the slopes differ for the LiFSI / G4 1:2 mixture (Fig. S1b). Thus, the self-diffusion
coefficients of ’Li and 1H for the LiFSI / G4 1:1 are identical. For the LiFSI / G4 1:2 mixture the



G4 diffusion coefficient is a fast exchange average of G4 coordinated to Li, and free G4, thus
it differs from the diffusion coefficient of the Li* ion.
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Figure S2: Voltage U dependent reduced phase shift values (¢ - ¢0)dy G 6 A
observed via 'H, “Li and °F eNMR a) for the LiFSI / G4 1:1 mixture and b) for the LiFSI / G4 1:2

mixture.

The observed 'H phase shift values and their slope describe the G4 movement, exhibiting the
same slope and mobility as ’Li for the LiFSI / G4 1:1 mixture (Fig. S2a). This is in agreement
with the observation of identical diffusion coefficients. For the LiFSI / G4 1:2 mixture (Fig. S2b)
a deviation for the slopes can be observed, which is again a consequence of the fast exchange
average giving the G4 mobility.

Thermodynamic factor for the LiTFSI / G4 1:1 mixture and different LiFSI / G4 mixtures
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Figure S3: Thermodynamic factors for the different electrolyte mixtures.
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Derivation of Egs. [35a-c]

We start with Eqgs. [33a], [33b], [34a], and [34b]:

1 N/2 N/2
mZ(AxT) +m Z(Ax:) =A-x,"+/N [33a]
i=1 i=1
N/2 N/2
Z(ij)-Z(Ax;)zB-xo-\m [33b]
i=1 i=1
Ax}’zxo-(gi+a?-A+bJ{-B) [34a]
Ax;zxo-(gi+a;-A+b;-B) [34b]

First, Egs. [34a] and [34b] are inserted into Eq. [33a] resulting in:

N/2 N/2

1 k _ _
m;[xO.(gi-Fa-; A_l_b‘i' .B)]+mi=1[x0-(gi+ai -A+bl. B)] [51]
=A-xy N

Since Yi denotes a displacement distribution function with mean gi=0 (averaged over all
ions), Eq. [S1] can be rewritten as:

1 N/2 N/2 N2 N2
g @ AT R 0T B Y e A) + Y07 B)| =AW (s
i=1 i=1 = o
From Eq. [S2] it follows that:
N/2 . N2 ]
1 K ]
e DGR v PN (53]
i=1 i=1
1 " N/2 ; y /2 ]
+ - —_—
m;(ai) +m;(ai) =N s

Next, we insert Eqs. [34a] and [34b] into Eq. [33b]:

N/2 N/2
Z[xo-(gi+a‘§ A+bt -B)]—Z[xo-(giJra; ‘A+b7 B)|=B-xy-\/N [S5]
i=1 i=1



Withgi= O, Eq. [S5] can be rewritten as:

N/2 N/2 N/2 N/2

Yot a)+ Y (b7 B)- Y, (a7 4)- Y (b7 B)=B-\N
i=1 i=1 i=1 i=1

From Eqg. [S6], it follows that:

N - N/2 N/2
;(af)‘;(af) =0 = ;(af) :;(a:)
N/2 N2

2, (1) Q) =W

Now, insertion of Eq. [S7] into Eq. [S4] leads to:

N/2
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N/2
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N/2

= D(at) =W

i=1

1

1+k
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1+k

The same is valid fori=1 , thus Eqg. [35a] can be written as:
N/2 N/2
+)\ — -\ —
Z(“i)—Z(“i)—\m
i=1 i=1
Next, we rewrite Eq. [S8] as:
N/2 N/2
- +
Z(bi):Z(bi)‘\m
i=1 i=1
and we insert Eq. [S10] into Eq. [S3]:
N/2

Z(bj) +

N/2

Y (pt)-VN
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1
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=0
1+k

From Eq. [S11], we obtain Eq. [35b]:
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Y00 =157 "

=

[S6]
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Finally, Eq. [35b] is inserted into Eq. [S10] leading to Eq. [35c].

N/2

Z(b?)—m N - \F——— JN [35¢]

self
Derivation of ¢ + — Eq. [36a]

We start with inserting Eq. [34a] into Eq. [S12]:

l

Axf=x0-(gi+aJ{-A+bJ{'B) [34a]

N/2

;(Ax?)z

Here, the brackets (-} denote the ensemble average. In the following, we assume that center-
of-mass and dipole fluctuations are uncorrelated, implying that (AB) = (A) - (B) =0, with

g;= 0’ (A) =0 and (B) =0 it follows that:

N/2

Z[xo +aJ{-A+bJ{-B)]2

2

self __ e
= $12
T 2Vk,TAt 2Vk,TAt [512]

2 N/2 N/2 N/2
asﬁff 2VE,Ta 2( )2+ Z A+ Z(bjr - B)? [513]
i=1 i=1
N/2

Y@

2 _
With (gi) =1 and thus the sumi=1 being identical to N/2, Eq. [S13] can be written as:

(xo) N/2 N/2
oY = —+Z a®t)?- (A +2 bt)? s14
T T 2VkTAE (2. (o) {4) . ( [524]
i=1 i=1
2 2
N N/2 o= e”* (xo)
=— 07 9. ..
With the number density v V' and the prefactor 2-kg-T At,we finally obtain

Eq. [36a]:
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Derivation of ¢ ++ — Eq. [36b]

We start with inserting Eq. [34a] into Eq. [31a], giving [S15].

AxT =

1

Since 9:=

044 =

0 , the sum

044 =

044 =

2

2Vk TAt
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Zg
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With Egs. [35a] and [35b], this results in:

With (4B)

044 =

04y =

= (4) - (B)

(xo)

2Vk TAt

(xo)

2Vk TAt

2

+aJ{-A+bJ{-B)])2

cancels, and Eq. [S16] is obtained.

{lasck

=0, this leads to Eq. [36b]:

OWA)+N
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Derivation of ©~ ++

We start with

- Eq. [36c]

distinct
=0

self

++ — 04y~ 04

derived from Eq. [20] and insert Egs. [36a] and [36b]:
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Derivation of ¢ - — Eq. [36d]
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Analoguous to the derivation of ¢ + , insertion of

Ax; =xy(9;+a7-A+b7-B)
Into

2
self _ e

© T 2Vk,TAt

iNZ/Zl(szY)

gives Eq. [36d]:
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Derivation of ¢ — — Eq. [36€]

Insertion of Egs. [34b], [35a] and [35c] into

oO__=———
2Vk,TAt

results in Eq. [36e]:

1
o__ =0, @M5+2 wﬂ)
1+k)
O_distinct
Derivation of -—  —Eq. [36f]
Insertion of Egs. [36d] and [36€] into
O_distinct =¢_ - O_se_lf

derived from Eq. [21] and resorting the terms results in Eq. [36f]:
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Derivation of ¢ +- — Eq. [36g]

Insertion of Eqgs. [34a] and [34b] into Eq. [31c]

2 N/2 N/2
e
e I
2Vk TAt =~
gives:
o2

o =
T 2VkgTAt

0

with 9i = Y this transforms into:

(xo)

o
= 2Vk TAt

With (4B) = (4) - (B) = 0, this simplifies to:
(xo) N/2 N/2 N/2
. - 2 +
7= T Uk, TAt (Z( i) ;(a i ))<A )+ (Zl(b :

Insertion of Eqgs. [35a]-[35c] results in [36g]:

(:Vz/j[xo-(gi+aj A+b*t 'B)])'(:Vz/j[xo'(gﬁa
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Derivation of %ion — Eq. [36h]
Insertion of Eqgs. [36b], [36€], and [36g] into Eq. [12]

Oion=044 tO0__-20,

results in:
k2
(B?)
(1 + k)?
20, (Z(Az) -2

1
(14 k)?

Oion=0p " (2(,42) +2

+0,- (Z(Az) +2

")

<BZ>) -
k
(1 + k)*

This simplifies to Eq. [36h]:

. . th o
Derivation of "+ “ion—Eq. [37a]

We start with

_ R,
Derivation of (1 t +) Tion — Eq. [37b]

We start with
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(l—tﬂ‘r)-aion=a__—0+_ [S27]

2
1+ k)Z(B )) [376]

tabc ‘o
Derivation of ~ + “ion-Eq. [39]

We start with

(04.)°
ta-ilzc "Tion =0 44 ~ p [S28]
derived from Eq. [13] and insert Eqgs. [36b], [36€], and [36g]:
k
2 ((AZ) - m(BZ} ?
tY G =0 2+ [{A%) + ————(B%) - [38]
(1 + k)* 2 1 2
(4%) + ———(B%)
(1 +k)?
k
(A%) « —Z(BZ) 22
In the case of 1+k) , the term ( ) from the expansion of
k
2 2\ |2
(4%) - ———(B%)
1+k) can be neglected, resulting in:
2k K
) ————(4%)(B*) - ———(B*)’
k 1+k 1+k
the. g, ~ayr2-[(4%) +—2(BZ) +( ) - d+h [S29]
1+k 2 2
(i (4%) + ——(B%)
1+k)
k? 1
_ —4(32 2 —2<BZ>
In the right-hand term, the terms (1+k) and (1 +k) are factored out in the

numerator and in the denominator, respectively:
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Since <A2) < (BZ)
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[S31]
k2
(1 + k)?
gy, AR (ANET) i+ i (ANE)
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(4%) + (B%) -

=042 [(A%) + 2k(A) + K*(A%)]
Thus, we finally obtain Eq. [39]:

t. g~y 2- (1 + k)% (4% [39]
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Derivationof ¢ + - Eq. [40a]
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We divide Eq. [36¢] by Eq. [36a]:

distinct
0 4+

Now we assume that the fluctuations are small so that
N/2
Yty

2

e~
 (Bh«1 ~
N/2 . In this case, we can apply the approximation 1+x
Eq. [40a]:
distinct kz
o ~-1+42(4%) 42 (B?)
i (1 4+ k)?

13

[$32]

X,
resulting in

[40a]



distinct
o

self
Derivationof ¢ - - Eq. [40b]

We divide Eq. [36f] by Eq. [36d]:

O_dis_tinct
self -
N / N/Z N
M) )
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2 2
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Again we assume that the fluctuations are small so that N/2 and
N/2
-\2
Z (b7)
C_ (BYH«1 ~1-x
N/2 . In this case, the approximation 1 +x results in Eq. [40b]:
O_disfinct , 1 )
~—1+2(A°) + 2——(B*) [40b]
o (1 + k)?
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