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PART I. SUPPUPLEMTAL TEXTS 

 

I. Value function in RL‡ 
The value function 0 ≤ 𝑝𝑤(TP|𝐑) ≤ 1  measures the 

probability of yielding a successful transition path from the 

initial configuration 𝐑. 𝑝𝑤(TP|𝐑) can be approximated by a 

neural network with a sigmoid output. However, this 

quantity is intrinsically random, hence cannot be simply 

fitted by regression. We proposed the following algorithm to 

optimize this function. 

A. Training objective 

Given an initial configuration leading to a successful 

shooting, 𝐑𝑖 , we sample N failed shooting points {𝐑𝑗}
𝑗=1

𝑁
, 

and calculate the following contrastive loss as suggested by 

some graph learning and self-supervised learning studies, 1-2 
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where 𝑝𝑤(𝐑) is a shorthand notation for 𝑝𝑤(TP|𝐑). 

Note that Eq. (S1) is similar to a soft-max function with a 

single output logit corresponding to 𝑝𝑤(𝐑𝑖). Therefore, for 

any successful shooting 𝐑𝑖 , ℒ(𝑤; 𝐑𝑖)  is minimized if 

𝑝𝑤(TP|𝐑𝑗)  for any failed shooting 𝐑𝑗  is negligible 

compared to 𝑝𝑤(TP|𝐑𝑖). In this sense, log 𝑝𝑤(TP|𝐑) takes a 

flavour of energy, and it is the difference of log 𝑝𝑤(TP|𝐑) 

but not the absolute value makes sense. 

This loss function is sample-efficient, and it allows us to 

optimize 𝑝𝑤  by shooting merely one or a few trajectories 

from a given configuration. In all the experiments, we 

exclusively shoot only one trajectory at a time for a given 

initial configuration. 

B. Regularization 

Since it is not the absolute value of 𝑝𝑤(TP|𝐑) matters in 

Eq. (S1), to stabilize the training (particularly to avoid 

numerical instability in the case 𝑝𝑤(𝐑) ≪ 1), we regularized 

Eq. (S1) with a cross-entropy (XE) term which helps limit 

the overall drift of 𝑝𝑤(TP|𝐑), 

    XE ; log R Ri w iw p  (S2) 

Finally, we adopt mini-batch optimization for ℒ(𝑤; 𝐑𝑖). 

For each optimization step, we randomly sample a small 

number of positive configurations, {𝐑𝑖}𝑖=1
𝑚 , and perform 

negative sampling for each of the positive sample. The mini-

batch loss function thus reads, 
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The mini-batch size 𝑚 and the regularization strength 𝜆 

are two hyper-parameters. The size of the accompany 

negative samples, N, is also a hyper-parameter, and usually 

a value between 10 to 50 suffices as suggested by related 

studies. 1, 3 

C. Susceptibility 

Given the value function 𝑝𝑤(TP|𝐑), we can analyze the 

relevance of each atom’s coordinates to the transition 

mechanism. Intuitively, if an atom plays a more important 

role in the chemical transition, then the perturbation of its 

position would cause more dramatic changes in 𝑝𝑤(TP|𝐑). 

In light of this reasoning, we define the “susceptibility” 

(denoted by 𝑆(𝐫𝑖)) of the value function w.r.t. the atom’s 

position as follows, , 

    TP | rr R
ii wS p  (S4) 

where 𝐫𝑖 is the Cartesian coordinates of the i-th atom, and 
‖∙‖ denotes the L2-norm of the vector. 

 

II. Policy function in RL‡ 
The policy function 𝑉𝜃(𝐑) is equivalent to a bias potential 

presented in most enhanced sampling approaches.4-6 We 

proposed and experimented with two different optimization 

strategies for 𝑉𝜃 in this paper. 

A. Policy gradient optimization (PGO) 

One approach to update the parametrized 𝑉𝜃(𝐑) is via the 

expectation-maximization algorithm, also known as the 

policy gradient7 in the literature of reinforcement learning. 

We thus term this optimization strategy as Policy Gradient 

Optimization (PGO). In PGO, we directly treat the value 

function 𝑝𝑤(TP|𝐑)  as a “reward”, and define an 

“advantage” function 𝐴(𝐑) based on the reward function. 

One common choice of 𝐴(𝐑) is, 
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Note that ⟨log 𝑝𝑤(TP|𝐑)⟩𝑉𝜃(𝐑)  serves as a baseline in 

order to reduce the variance of the gradient estimator. It has 

been shown that any alternative function which is 

independent of the state (namely, 𝐑) can also be used as the 

baseline. Then the unbiased gradient estimator of 𝑉𝜃(𝐑) 

reads, 

      
 

   
R

R R
V

A V  (S6) 

where 𝛽 is the inverse temperature, and ⟨∙⟩𝑉𝜃(𝐑) denotes the 

expectation value over the equilibrium Boltzmann 

distribution biased by 𝑉𝜃. 

We remark here that, the performance of PGO strongly 

relies on the advantage function which is generally non-

trivial to define, and careful reward shaping is usually 

needed. One of the main challenges in reward shaping is to 

balance the exploration with exploitation so as to avoid mode 

dropping (i.e., being early trapped in sub-optimal solutions). 

In this regard, Eq. (S6) could be less effective for 
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complicated reactions (e.g., where multiple distinct 

transition states exist). 

B. Variational targeted optimization (VTO) 

Another learning strategy is inspired by targeted 

adversarial optimized sampling (TALOS)8 and variationally 

enhanced sampling (VES).9 Specifically, given the value 

function 𝑝𝑤(TP|𝐑), we can formulate a target distribution 

𝑝T(𝐑)  where regions of higher value also admit higher 

probability density. For instance, arguably the most 

straightforward choice of the target is to equate 𝑝T(𝐑) with 

𝑝𝑤(TP|𝐑). More reasonable choices of 𝑝T which can better 

trade-off exploration and exploitation will be introduced in 

the next section. 

Once the target distribution is set, our goal is to train a 

policy function 𝑉𝜃(𝐑)  which could induce a biased 

equilibrium distribution, denoted by 𝑝𝜃 ∝ exp[−𝛽(𝑈 +
𝑉𝜃)], identical to the target distribution  𝑝T. This goal can be 

achieved via minimizing a strict divergence between 𝑝T and 

𝑝𝜃 . For example, in this paper we minimized the Kullback-

Leibler divergence, 𝐷KL(𝑝T||𝑝𝜃), following the gradient:10-

11 
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Besides, the gradient for another strict divergence, 

Wasserstein-1 distance, 𝐷W(𝑝T||𝑝𝜃) , has been separately 

derived in TALOS,8 and can also be used for optimizing 

𝑉𝜃(𝐑). 

 

III. Improved training of RL‡ 
Like any reinforcement learning tasks, RL‡ has to deal 

with issues including partial sampling and moving 

distributions (or dynamic datasets). Therefore, we adopted 

several useful techniques widely adopted in reinforcement 

learning, to make the training progress of RL‡ more robust 

and efficient. 

A. Experience replay 

It is known that the optimality of a value function is 

independent of the policy function (or the sampling 

procedure). So in order to reduce the dependence of the 

convergence of the value function on the policy function, we 

prepare two buffer sets ℬ , one containing all previously 

successful shootings (called positive buffer) and the other 

containing all failed shootings (called negative buffer). 

In one Expert Iteration, we not only shoot trajectories 

initialized at the newly sampled configurations, but also at 

some configurations randomly drawn from both buffer sets. 

Consider that in a first trial, a particular configuration 𝐑 

leads to a successful transition path and enters into the 

positive buffer. However,  𝐑 may also fail and hence into the 

negative buffer. Note that we do not override the buffers, so 

configurations with higher chances of winning will appear 

more frequently in the positive buffer. In this way, the 

randomness of the shooting outcomes is implicitly taken into 

account. During each optimization step, we randomly select 

a mini-batch of samples from both positive and negative 

buffers and feed them into Eq. (S3) to calculate the loss for 

the value function. 

Furthermore, since generating data by real samplers (e.g. 

MD engines) are usually expensive, we also implement 

experience replay to reduce the cost of generating data and 

maximize the sample efficiency. Our reasoning is that, the 

recently sampled data are statistically close to the latest 

samples, hence can be jointly used via proper re-weighting 

according to importance sampling. This idea is similar to 

some reinforcement learning algorithms including trusted-

region policy optimization12 and proximal policy 

optimization.13 Let 𝑉(𝑡)(𝐑) and 𝑍(𝑡)denote the bias potential 

and the corresponding partition function at the training 

iteration 𝑡, respectively. To replay the experience, one needs 

to estimate the ratio of the partition functions 𝑍(𝑡) between 

different 𝑡’s. This can be conveniently done using multi-

ensemble re-weighting techniques such as weighted 

histogram analysis (WHAM)14 and multistate Bennett 

acceptance ratio (MBAR).15 

B. Multi-agent exploration 

In order to obtain a robust estimate of ensemble averages, 

we borrow the idea of advantage actor critic reinforcement 

learning16 that to launch multiple samplers (or agents in 

terms of reinforcement learning) synchronously, and split the 

data collected by all the samplers into mini-batches to train 

the value and policy functions. Such practice effectively 

encourages exploration, not only leading to faster 

convergence, but also avoiding the early trap in the mode-

collapsed local minima. In the research of enhanced 

sampling, similar strategy was adopted in the multiple-

walker metadynamics17 which usually ensures faster 

convergence than vanilla metadynamics. 

C. Balance exploration and exploitation 

PGO strongly relies on the choice of advantage or reward 

function. It can be found that a reward as defined in Eq. (S5) 

will be ineffective for PGO (Eq. (S6) if no positive feedback 

has been observed. Therefore, exploration should be 

accounted for separately if necessary. For example, one can 

design a reward function proportional to the free energy of 

the state. Besides, many enhanced sampling techniques can 

be used for exploration. 

In VTO, we can readily balance the exploration with the 

exploitation by explicitly re-writing the target distribution 

into two components, one for exploration while the other for 

exploitation. The target distribution reads as follows (the 

same as Eq. (3) in the main text), 

  T exploit explorelog log 1 log   p p p  (S8) 

Given a set of order parameters 𝐬(𝐑) which are used to 

define the reactant and product, we can define a uniform 

distribution over 𝐬  as 𝑝explore . A well-tempered target 

distribution over 𝐬  can also be adopted for the same 

purpose.11 Even if there are no order parameters available, 

one can still write the explorative distribution explicitly as in 
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integrated tempering sampling18-19 or implicitly as in 

temperature replica exchange methods.5 

As explained in the main text, the exploitive component is 

based on the value function, 

  exploit TP | Rwp p  (S9) 

The hyper-parameter 𝛼  in Eq. (S8) is used to trade 

exploration for exploitation. When  𝛼  is close to zero, the 

sampling is dominant by exploration; When 𝛼 approaches 1, 

the sampling is dominant by exploitation. We thus term 𝛼 as 

the “exploitation factor”. 

Since the exploitive distribution (Eq. (S9)) is learned from 

scratch and gradually updated during RL‡, it would be very 

inaccurate in the beginning of training. Moreover, at the 

beginning of the training when positive feedbacks (i.e., 

successful shootings) are rare, so exploration is very 

important. Following these considerations, during training, 

we recruited a schedule to gradually tune 𝛼 from 0 to an 

asymptotic threshold 𝛼max ≤ 1 . We found that usually a 

threshold 𝛼max  between 0.5 and 0.6 suffices for enhanced 

sampling of the transition states, meanwhile preserves 

adequate exploration (or coverage) over the rest of the 

configurational space. 

 

IV. Parametrization of RL‡ 
Many functional forms are optional for the value function 

policy function 𝑉𝜃. For example, it can be a linear expansion 

of certain basis functions where   are the expansion 

coefficients;9 or can be a non-linear neural network, where 

  are the built-in parameters of artificial neural networks 

(ANNs).20 On the other end, the value function 𝑝𝑤  is 

exclusively approximated by ANNs in this paper. 
A. Orthonormal polynomials or functions 

If the input to the policy network is low-dimensional, we 

recommend orthonormal basis functions as 𝑉𝜃 , and the 

expansion coefficients are the learnable parameters. For 

periodic input variables 𝐬(𝐑), like torsional angles, Fourier 

expansions can be adopted. For non-periodic 𝐬(𝐑) , 

Legendre or Chebyshev polynomials can be used. 

Orthonormal polynomials usually yield smooth energy 

function, so generally no additional regularization is needed. 

B. Multi-layer perceptron (MLP) 

MLPs are most commonly seen ANNs consisting of fully 

connected hidden layer. The input of a MLP, 𝐬(𝐑), should 

trans-rotational invariant features of the molecular system. 

More importantly, each dimension of the input vector 𝐬 

should be indexible. MLP will transform the input vector to 

hidden features, and finally yields an output vector. We 

experimented with MLP in conjunction with neural 

allocative potential11 as a policy function in the numerical 

model system. 

C. Graph Neural Network (GNN) 

Molecular systems consisting of particles (e.g., atoms) can 

be viewed as a graph, where vertices (or nodes) represent the 

particles while the interactions between particles can be 

modeled by graphical edges. Graph neural networks hence 

can be used to model molecular systems. GNNs exhibit a 

nice property that preserves the trans-rotational invariance 

and permutation invariance of the many-particle system.21 

There are several recently developed models that specifically 

deal with molecular systems, including SchNet22 and 

PhysNet.23 Both models directly learn a function based on 

the Cartesian coordinates 𝐑  and the type of the particles. 

Particularly, in some experiments, SchNet was used as the 

value functions 𝑝𝑤′(TP|𝐑) for post-analysis of the reaction 

mechanism. 

D. Neural allocative potentials (NAP) 

We note here that it is not the absolute value but the 

difference of energy makes physical sense. Based on this 

observation Zhang et al. proposed a new output layer for 

ANN-based potential energy functions, called neural 

allocative potentials (NAP)11. Here we recapitulated the 

main ideas behind NAP. Firstly, a lower bound and an upper 

bound for the bias potential is chosen, and "quantized" into 

𝐾  fixed levels {𝐸𝑘}𝑘=1..𝐾 . Then the following functional 

form is introduced, 
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where ∑ 𝜔𝑘(𝐬; 𝜃)𝑘=1,𝐾 = 1 corresponds to the output of an 

ANN with a soft-max output layer. Therefore, NAP is 

nothing but a new output layer that can be straightforwardly 

equipped with any ANNs. 

Now the problem of learning a scalar is transformed into 

learning a simplex {𝛼𝑘}𝑘=1..𝐾. Following this form, NAP is 

trained to allocate proper amount of energy to configuration 

𝐬 , rather than estimate the absolute value of the bias 

potential. 

 

V. Expert Iterations in RL‡ 
Training of RL‡ is based on Expert Iterations (EXIT’s).24 

In other words, RL‡ is gradually improved through a series 

of EXIT’s. Each Expert Iteration consists of four individual 

steps that together form a loop: 

Step 1. Sample according to 𝑝shoot  as Eq. (1) in the main 

text, where the Expert performs exploration over the 

configuration space. 

Step 2. Shoot trajectories from the sampled coordinates 

with random momenta (Algorithm S1), and record the game 

results into replay buffers. 

Step 3. Sample from the replay buffers and update the 

value function according to Eq. (S3). 

Step 4. Update the policy function 𝑉𝜃, either through PGO 

as Eq. (S6) or VTO as Eq. (S7). Use the updated 𝑉𝜃  for 

𝑝shoot (thus the Expert is improved), and return to Step 1. 

We remark here that, Steps 1 and 2 correspond to the 

Expert’s action, to discover promising configurations 

leading to the victory. Steps 3 and 4 correspond to the 

training of the Apprentice, who summarizes the positive 
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feedbacks provided by the Expert. Based on the improved 

Apprentice (i.e., the updated value and policy functions), the 

action of the Expert is optimized. Synapses of the “shooting 

game” and the training protocol of RL‡ are summarized in 

Algorithm S1 and Algorithm S2, respectively. 

As in many reinforcement learning tasks, it is hard to 

define or reach a definitive optimal solution, so usually we 

will stop at a fairly satisfying model. We stop the training of 

RL‡ according to two criteria: i) The loss for value function, 

Eq. (S3), becomes steady and no longer diminishes, and ii) 

The chance of winning the game according to 𝑝shoot exceeds 

a user-specified threshold or no longer increases (the default 

threshold in this paper is 10%). For ANNs, we adopt Adam25 

as the optimizer. If basis functions are used as the policy 

function, the Averaged Stochastic Gradient Descent 

(ASGD)26 is optional as optimizer as suggested by VES.9 

Besides, by adopting the advanced optimization techniques 

including experience replay and multi-agent exploration as 

introduced earlier, we can further expedite and stabilize the 

training of RL‡. 

 

 

Algorithm S1. Shooting game in RL‡ 

1: 
Define: reactant and product; inverse-temperature 𝛽; step-size ∆𝑡, maximal 

simulation length 𝑡max. 
 

2: Input: initial configurations {𝐑0}.  

3: Sample random momenta {𝐩0}  according to Maxwell distribution at 𝛽.  

4: Initialize Leap-Frog integrator at  {𝐑0, 𝐩0}  

5: While Rt  not belong to reactant or product and maxt t , do  

6:  1 1LeapFrog ,, ,  R pR p t tt t t  Forward integration 

7: End While  

8: While R t  not belong to reactant or product, do  

9:     1 1LeapFrog ,, ,
     R pR pt t t t t  Reversed integration 

10: End While  

11: If {𝐑𝑡} and {𝐑−𝑡} end up in different states, we win the game.  

 

 

  



5 

 

 

Algorithm S2. Reinforcement Learning of Transition States (RL‡) 

1: 
Input: Initialize value network 𝑝𝑤  , policy network 𝑉𝜃  and void replay 

buffers ℬ. 
 

2: Set learning rates 𝛼𝑤 and 𝛼𝜃 for 𝑤 and 𝜃, and optimizer’s hyper-parameters  

3: While converge criteria not met, do  

4: Run MD/MC under 𝑈 +  𝑉𝜃, collect samples {𝐑MD} Expert’s action 

5: Draw random samples {𝐑ℬ} from replay buffers experience replay 

6: Shooting from  {𝐑MD} ∪ {𝐑ℬ} according to Algorithm S1.  

7: Update replay buffers ℬ  

8: For 0  wt n  train 𝑝𝑤 for wn  steps 

9: Draw mini-batch of samples from ℬ to calculate ℒ(𝑤).  Eq. (S3) 

10:             Adam , , w ww w w  update value network 

11: End For  

12: If VTO, do  

13: Update the exploitation factor 𝛼.  

14: Update the target distribution 𝑝T. Eq. (S8) 

15: End If  

16: For 0  t n  train 𝑉𝜃 for n  steps 

17: Draw mini-batch of samples from {𝐑MD} to calculate  〈∇𝜃𝑉𝜃(𝐬)〉𝑝𝜃
.  

18: Calculate ∇𝜃ℒ(𝜃) via PGO or VTO Eq. (S6) or (S7) 

19:             Adam / ASGD , ,       update policy network 

20: End For  

21: End While  
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PART II. SIMULATION AND TRAINING DETAILS 

 

I. Berezhkovskii-Szabo potential 
We first illustrated how RL‡ works in an interpretable way 

on a model system, the Berezhkovskii-Szabo (BS) 

potential.27 This 2-dimensional model potential consists of 

two local minima separated by an energy barrier (Fig. S1A), 

and captures key features of chemical reactions in a 

simplified manner. 

A. Simulation setup 

Given the inverse temperature  , the BS potential27 takes 

the following form: 
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For our simulations, we chose 1  , 0 2.2x  , 2 4  , 

2 2
0 4x  , and 2 21.01  . Besides, the diagonal 

diffusion tensor used in the overdamped Langevin equation 

was set to be: 
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The resulting white-noised Langevin dynamics was 

simulated with a discrete time integration step of 0.01. 

B.  RL‡ models 

In the shooting game, the reactant is defined as 

(𝑥 < −2, 𝑦 < −2), and the product is (𝑥 > 2, 𝑦 > −2). 

The value function 𝑝𝑤(TP|(𝑥, 𝑦)) is a MLP which inputs 

(𝑥, 𝑦). The MLP contains 3 hidden layers, each of 64 units 

and an ELU activation function.28 The output layer 

corresponds to a single unit with sigmoid activation function. 

The policy function 𝑉𝜃(𝑥, 𝑦) is also a MLP, which inputs 
(𝑥, 𝑦) and contains 2 hidden layers with hyperbolic tangent  

activation. The output layer takes the form of NAP (Eq. 

(S10)), consisting of 11 logits which uniformly quantize the 

energy range of [−5,5]  kBT. Besides, we implemented 

spectral normalization29 over the weight matrices of the MLP 

to regularize the gradients. 

C.  Training details 

We regularized the value network as in Eq. (S2), with the 

regularization strength 𝜆 = 0.1 . We optimized the value 

network according to Eq. (S3), with a mini-batch 𝑚 = 10 

positive samples, and each positive sample is accompanied 

by 𝑁 = 50 negative samples. The Adam optimizer with a 

learning rate of 10-3 was adopted (the hyper-parameter 𝛽1 =
0.8 and 𝛽2 = 0.9).  

Given a policy function 𝑉𝜃 , we ran a biased Langevin 

dynamics for 5000 steps, and used the collected samples to 

update the policy network. In this model, such a short 

Langevin simulation suffices to generate near-equilibrium 

samples, so we did not perform additional exploration or pre-

training, and directly optimized the policy function via PGO 

(Eq. (S6)). The Adam optimizer with default hyper-

parameters and a learning rate of 2 × 10−4 was adopted. 

In one Expert Iteration, 𝑛𝑤 = 𝑛𝜃 = 5  steps of 

optimization were performed for both 𝑝𝑤  and 𝑉𝜃 , 

respectively (Algorithm S2). In each EXIT, we launched 100 

random shootings. Totally 100 Expert Iterations were 

executed, and the overall shooting moves amounts to 10,000. 

The final successful shooting probability is about 12% (Fig. 

S1B). 

D.  Results 

From Fig. S1B we can see that the training of RL‡ is very 

efficient, leading to a converged value function (with ℒ(𝑤) 

no longer diminishing significantly) within 50 EXIT’s, and 

the average winning chance exceeds the prescribed threshold 

(10%) after 80 EXIT’s. Besides, RL‡ is fairly sample-

efficient in that only 10,000 random shootings were 

performed in total. After training is done, we plotted the 

policy function (Fig. S1C) and found it clearly diverts the 

sampling from the reactant or product regions to the TS 

region. This form of 𝑉𝜃  reminds one of the harmonic bias 

potential centered at the TS as adopted in umbrella sampling. 

However, unlike umbrella sampling, 𝑉𝜃  in RL‡ is learned 

without any knowledge of the reaction coordinate. On the 

other end, we can interpret the reaction mechanism based on 

the value function (Fig. S1D). As can be seen in Fig. S1D, 

the region of highest 𝑝𝑤(TP|𝑥, 𝑦)  values corresponds 

exactly to the dividing surface of the BS potential. 

Additionally, we can track the training process of RL‡ by 

plotting the samples from 𝑝shoot  at different training 

iterations (Fig. S1E). We find that the sampled 

configurations become increasingly concentrated around the 

TS region. Particularly after 100 EXIT‘s, the sampled 

configurations are located exactly around the TS, in 

agreement with the expected effect brought by the optimized 

policy 𝑉𝜃 . This example demonstrates that RL‡ can be 

trained tabula rasa hence allows us to reveal the reaction 

mechanisms with minimal a priori expertise or assumptions. 

 

II. SN2 reaction 
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A. Simulation setup 

The MD simulations of the SN2 reaction in vacuum were 

performed using the QM/MM module of SANDER program 

at AmberTools 17 software package.30 All the atoms of the 

system are set as the QM part using the semi-empirical PM6 

model.31 No constraint is added on chemical bonds, and no 

cut-off is used for the non-bonding interactions. The 

simulations temperature was kept at 300 K, and the time step 

was 1 fs. During the simulation, harmonic restraining walls 

had been added on 𝑑1 and 𝑑2 (Fig. 2A in the main text) for 

distances larger than 6 Å to prevent the atoms moving too far 

away, which was utilized using the bias UPPER_WALL in 

the PLUMED232 plug-in library (KAPPA is 1000 kJ/mol). 

B.  RL‡ models 

In the shooting game, we selected 𝐬 = (𝑑1, 𝑑2)  as the 

order parameter for characterization of reactant and product 

(Fig. 2A in the main text). The reactant is defined as 

(1Å < 𝑑1 < 2Å, 𝑑2 > 4Å) , and the product is (𝑑1 >

4Å, 1Å < 𝑑2 < 2Å). 

During EXIT, we constructed a value function 𝑝𝑤(TP|𝐬) 

operating on 𝐬 but not the coordinates of the entire system. 

𝑝𝑤 is a MLP contains 2 hidden layers, each of 128 units and 

an ELU activation function. The MLP inputs (𝑑1, 𝑑2), and 

the vector yielded by the last hidden layer is denoted by 𝐳12. 

We took account of that 𝑝𝑤 should be symmetric w.r.t. the 

exchange of 𝑑1 and 𝑑2, so we also applied the same MLP but 

with the input transposed, (𝑑2, 𝑑1) , and yielded another 

hidden vector 𝐳21. We then summed over 𝐳12 and 𝐳21 before 

feeding forward to the final sigmoid output unit. 

The policy function 𝑉𝜃(𝐬) was also built upon 𝐬, and was 

expanded by Legendre polynomials, 

      1 2 1 2

, 0

, 



 
K

ij i j

i j

V d d f d f d   

where 𝑓𝑖  denotes the i-th order Legendre polynomial with 

𝐾 = 25 . �̅�  is a generalized sigmoid function33 which 

squashes 𝑑  into the range of [-1,1] supported by the 

Legendre polynomials. 

C.  Training details 

We regularized the value network 𝑝𝑤(TP|𝐬)  with the 

regularization strength 𝜆 = 0.5  (Eq. (S2)). The value 

network was optimized according to Eq. (S3) with a mini-

batch 𝑚 = 20 positive samples, and each positive sample is 

accompanied by 𝑁 = 50  negative samples. The Adam 

optimizer with a learning rate of 10−4  and default hyper-

parameters was adopted.  

Given a policy function 𝑉𝜃 , we performed multi-agent 

exploration with 10 parallel QM/MM MD simulations 

according to Eq. (1) in the main text, and each simulation 

lasted for 2 ps. The collected samples were then used to 

update the policy network via PGO (Eq. (S6)). Since the 

reaction can rarely take place in an unmodified PES, we 

performed a pre-training for exploration prior to PGO, where 

a metadynamics simulation over 𝐬  was launched. The 

samples collected during metadynamics was used to 

approximate the FES (Fig. 2B in the main text). We also 

implemented experience replay to expedite the training of 

the policy network. We adopted Adam optimizer with a 

learning rate of 0.1 and the hyper-parameters were chosen as 

𝛽1 = 0.8 and 𝛽2 = 0.9. Optimization of both functions was 

executed on Tensorflow (v1.15.0). 

In one Expert Iteration, 𝑛𝑤 = 10  steps of optimization 

were performed for 𝑝𝑤  and 𝑛𝜃 = 2  for 𝑉𝜃 , respectively 

(Algorithm S2). In each EXIT, we launched 100 random 

shootings. Totally 300 Expert Iterations were executed, and 

the overall shooting moves amounts to 30,000. The final 

successful shooting probability is about 15%. 

D.  Susceptibility analysis 

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑) 

based on the obtained transition state ensembles. 𝑝𝑤′(TP|𝐑) 

operates on the Cartesian coordinates of all the atoms. 

𝑝𝑤′(TP|𝐑)  takes the default architecture of a SchNet,22 

except that we replaced the original the output layer by a 

single output unit with a sigmoid activation function. 

Since the training will suffer from disappeared gradient 

during backpropagation due to sigmoid function, then we 

regularized the input to sigmoid layer 𝐡(𝐑𝑖) according to 

equation below with the regularization strength 𝜆EC = 10−4. 

    
2

ECEC '; ';R h Ri iw w  (S11) 

We also regularized the value network 𝑝𝑤′(TP|𝐑) with the 

regularization strength 𝜆 = 0.001  (Eq. (S2)). The value 

network was optimized with a mini-batch 𝑚 = 10 positive 

samples, and each positive sample is accompanied by 𝑁 =
20 negative samples. 

After optimization of 𝑝𝑤′(TP|𝐑)  was done, the 

susceptibility was computed for each atom according to Eq. 

(S4). The susceptibility of each atom was then averaged over 

the transition state ensemble and reported in Fig. 2E in the 

main text. 

 

III. Alanine dipeptide (Ala2) 
A. Simulation setup 

For the alanine dipeptide in aqueous solution, no ions were 

added since the terminal of the alanine was neutrally blocked 

(namely, ACE-ALA-NME) surrounded by 384 SPCE34 

water molecules. All the simulations were executed on 

AMBER17 package30 using FF99SB force field 35 

parameters. The aqueous solution system was put in a 

rectangular simulation box with periodic boundaries on. 

SHAKE algorithm36 was adopted to constrain all covalent 

bonds involving hydrogen atoms, and a 2 fs time step was 

permitted. The system underwent a standard relaxation 

procedure and equilibrated to an NTP ensemble (300 K, 

1atm). To equilibrate the system to the appropriate volume, 

the pressure of the system was adjusted to 1 atm by the 

Berendsen weak-coupling algorithm37 with the relaxation 

time constants of 0.2 ps under another 1 ns long normal MD.  

B.  RL‡ models 
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In the shooting game, we defined the reactant, i.e., the cis-

conformation, corresponding to 30° < 𝜙 < 90°; while the 

product, i.e., the trans-conformation, corresponds to 

−170° < 𝜙 < −60°. 

During EXIT training, we constructed the value on 𝐬 =
(𝜙, 𝜑). The value function 𝑝𝑤(TP|𝐬) is a MLP. To account 

for the periodicity of 𝐬 , we first transform 𝐬  into a torus 

vector,  

  torus cos ,cos ,sin ,sin   s   

Then 𝐬torus  is fed into the MLP composed of 2 hidden 

layers, each with 128 hidden units and ELU activation 

function. The output layer corresponds to a single unit with 

sigmoid activation function. 

The policy 𝑉𝜃(𝐬) is also a function of the 2D (𝜙, 𝜑) space. 

Since 𝜙 and 𝜑 are periodic variables, we expanded 𝑉𝜃(𝜙, 𝜑) 

using the Fourier polynomial: 

       
0 0

cos sin cos sin     



 

        
j Ni N

ij

i j

V i i j j   

where 8N  . 

C.  Training details 

The value network 𝑝𝑤(TP|𝐬) was regularized according to 

Eq. (S2) with 𝜆 = 0.5 . We optimized the value network 

using a mini-batch of 𝑚 = 20 positive samples, and each 

positive sample is accompanied by 𝑁 = 50  negative 

samples. The Adam optimizer with a learning rate of 10−4 

and default hyper-parameters was adopted. The optimization 

of 𝑝𝑤(TP|𝐬) was done in Tensorflow (v1.15.0). 

Under a policy function 𝑉𝜃(𝐬), we performed multi-agent 

exploration with 10 parallel MD simulations according to 

Eq. (1) in the main text, and each trajectory was 20 ps in 

length. Experience replay was also adopted to expedite the 

training of 𝑉𝜃. The collected samples were used to update 𝑉𝜃 

via VTO as in Eq. (S7). We chose a uniform distribution over 

𝐬  as 𝑝explore , and the target distribution 𝑝T  was defined 

according to Eq. (S8). During training, the exploitation 

factor 𝛼  was gradually increased from 0 to 0.6. We 

implemented ASGD optimizer built in PLUMED2, with a 

learning rate of 0.5 to update 𝑉𝜃. 

In one Expert Iteration, 𝑛𝑤 = 10  steps of optimization 

were performed for 𝑝𝑤  and 𝑛𝜃 = 200 for 𝑉𝜃 , respectively 

(Algorithm S2). In each EXIT, we launched 100 random 

shootings. Totally 240 Expert Iterations were executed, and 

the overall shooting moves amounts to 24,000. The final 

successful shooting probability is about 11%. 

D.  Susceptibility analysis 

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑) 

based on the obtained transition state ensembles. The model 

architecture is the same as in SN2 reaction. 

The value network 𝑝𝑤(TP|𝐬) was regularized according to 

Eq. (S2) and Eq. (S11) with 𝜆 = 0.01 and 𝜆EC = 10−4. We 

optimized the value network using a mini-batch of 𝑚 = 10 

positive samples, and each positive sample is accompanied 

by 𝑁 = 20 negative samples. The Adam optimizer with a 

learning rate of 10−4  and default hyper-parameters was 

adopted. The optimization of 𝑝𝑤′(TP|𝐑)  was done in 

Tensorflow (v1.15.0).  

After optimization of 𝑝𝑤′(TP|𝐑)  was done, the 

susceptibility was computed for each atom according to Eq. 

(S4). Since we are interested in the solvent effects, we 

calculated the radial averaged susceptibility for the solvent 

atoms. Specifically, for a given solvent atom type 𝑧 (e.g., 

oxygen or hydrogen), RAS of atom type 𝑧 as a function of 

radial distance 𝑟 is defined as, 
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where 𝒓𝑧 stands for the positions of all 𝑧-type atoms. 𝑆(𝒓𝑧) 

is defined as Eq. (S4), 𝐑COM  is the coordinate of Ala2’s 

center-of-mass, and 𝛿 denotes the Dirac-delta function. We 

computed the RAS for oxygen and hydrogen, respectively, 

and reported the results in Fig. 3G in the main text. 

 

IV. Claisen rearrangement 
A. Simulation setup 

The simulation was performed at the QM/MM interface on 

AMBER14 MD platform. The self-consistent charge density 

functional tight-binding (SCC-DFTB) method 38 was 

adopted to approximate the quantum mechanical 

Hamiltonian of the reactant molecule. The solvent is a kind 

of ionic liquid, containing a pair of soluble ion pairs termed 

as [C2mim]+ [NTf2]- (Fig. S3). We adopted the classical force 

field developed by Sieffert and Wipff39-40 to describe the 

solvent molecular ions and SHAKE was imposed on the 

solvent. No additional ions were added. 

The system underwent a standard relaxation procedure and 

equilibrated to an NTP ensemble (300 K, 1 atm) lasting for 

1-ns long normal MD. A cutoff of 10.0 Å was applied for 

calculating nonbonding interactions. All the simulations 

were performed with a 1-fs time integration step (no SHAKE 

on QM-treated molecule) and with periodic boundary 

condition. 

B.  RL‡ models 

In the shooting game, we selected 𝐬 = (𝑑1, 𝑑2)  as the 

order parameter to distinguish the reactant from product 

(Fig. 4A in the main text). The reactant is defined as 

(1Å < 𝑑1 < 1.6Å, 𝑑2 > 2.5Å) , and the product is (𝑑1 >

3Å, 1Å < 𝑑2 < 1.5Å). 

During EXIT training, a MLP which inputs 𝐬  was 

employed as the value function 𝑝𝑤(TP|𝐬) . This MLP is 

stacked with 2 hidden layers, each consisting of 128 units 

with ELU activation function. The output layer is a single 

sigmoid unit. 

The policy function 𝑉𝜃(𝐬), which also operates on the 2D 

(𝑑1, 𝑑2) space, is expanded by Legendre polynomials. The 

input 𝑑  was first linearly scaled into −1 ≤ �̅� ≤ 1, and 𝑉𝜃 

takes the form of 
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where 𝑓𝑖  denotes the i-th order Legendre polynomial, and 

𝐾 = 30. 

C.  Training details 

We regularized the value network 𝑝𝑤(TP|𝐬) according to 

Eq. (S2) with 𝜆 = 0.5, and minimized Eq. (S3) using a mini-

batch of 𝑚 = 20  positive samples. Each positive sample 

was accompanied by 𝑁 = 50 negative samples. The Adam 

optimizer with a learning rate of 10−4  and default hyper-

parameters was adopted. The optimization of 𝑝𝑤(TP|𝐬) was 

carried out on Tensorflow (v1.15.0). 

In each training iteration, 10 parallel QM/MM MD 

simulations were performed for multi-agent exploration 

under a biased potential 𝑉𝜃(𝐬) according to Eq. (1) in the 

main text, and each individual simulation was 20-ps long. 

The collected samples were used to update 𝑉𝜃 via VTO as in 

Eq. (S7). We chose a uniform distribution over 𝐬 as 𝑝explore, 

and the target distribution 𝑝T was defined according to Eq. 

(S8). During training, the exploitation factor 𝛼  was 

gradually increased from 0 to 0.5. We implemented ASGD 

optimizer built in PLUMED2, with a learning rate of 0.5 to 

update 𝑉𝜃. 

In one Expert Iteration, 𝑛𝑤 = 10  steps of optimization 

were performed for 𝑝𝑤 , and 𝑛𝜃 = 100 for 𝑉𝜃 , respectively 

(Algorithm S2), and 100 random shootings were launched. 

Totally 400 Expert Iterations were executed, and the overall 

shooting moves amounts to 40,000. The final successful 

shooting probability is about 10%. 

D.  Susceptibility analysis 

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑) 

based on the obtained transition state ensembles. The model 

architecture is the same as in SN2 reaction. Since the solvent 

contains too many atoms, we first coarse-grained each 

solvent molecule into a single particle located at its center-

of-mass. 𝑝𝑤′(TP|𝐑) then incorporates the coordinates of all 

the solute atoms and the coarse-grained solvent particles. 

The value network 𝑝𝑤′(TP|𝐑) was regularized according 

to Eq. (S2) and Eq. (S11) with 𝜆 = 0.01 and 𝜆EC = 10−4 . 

We optimized the value network using a mini-batch of 𝑚 =
10  positive samples, and each positive sample is 

accompanied by 𝑁 = 20  negative samples. The Adam 

optimizer with a learning rate of 10−4  and default hyper-

parameters was adopted. The optimization was done in 

Tensorflow (v1.15.0).After optimization of 𝑝𝑤′(TP|𝐑) was 

done, the susceptibility was computed for each solute atom 

according to Eq. (S4), and was then averaged over the 

transition state ensemble and reported in Fig. 4E. We also 

calculated the radial averaged susceptibility (RAS) for the 

solvent molecules (as shown in Fig. 4F). Besides, we 

showcased the instantaneous susceptibility (i.e., not 

averaged over any other structures) of a snapshot (Fig. 4G), 

where each solvent molecule was colored as a whole 

according to the susceptibility of its corresponding coarse-

grained particle. 
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PART III. SUPPLEMENTAL FIGURES 

 

 

 

 

Figure S1.  RL‡ for BS model potential. (A) Colored contour map of the BS potential energy surface (PES). (B) Average 

winning chance (black line) and loss of the value function ℒ(𝑤) (red line) plotted against Expert Iterations. A typical stop-

threshold for training (winning chance exceeds 10%) is shown in dashed line. Indeed, we trained the value and policy functions 

for 100 iterations. (C) Contour map of the final policy function 𝑉𝜃(𝑥, 𝑦). Transparent contour lines of the PES are shown in 

background. (D) Contour map of the final value function log 𝑝𝑤(TP|𝑥, 𝑦). Transparent contour lines of the PES are shown in 

background. (E) Samples from 𝑝shoot at different Expert Iterations, colored according to the value function log 𝑝𝑤(𝑥, 𝑦); Grey 

contour lines of the PES are shown in background. 

 

 

 

 

 
Figure S2.  Statistics of the transition path duration (TPD) of the SN2 reaction. The histogram of the TPD was computed 

according to the transition path ensemble collected by RL‡. The red dashed line stands for a log-normal fit of the TPD histogram. 
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Figure S3.  Structures of the ionic liquid used as solvent for the Claisen rearrangement. The cation is [C2min]+ (left) and the 

anion is [NTf2]- (right). 
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