
Supplementary Information

 Deep Reinforcement Learning of Transition States

Jun Zhang1,#, Yao-Kun Lei2,#, Zhen Zhang3, Xu Han2, Maodong Li1, Lijiang Yang2, Yi Isaac Yang1,* and Yi Qin

Gao1,2,4,5,*

1 Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518055 Shenzhen, China
2 Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking

University, 100871 Beijing, China.
3 Department of Physics, Tangshan Normal University, 063000 Tangshan, China.

4 Beijing Advanced Innovation Center for Genomics, Peking University, 100871 Beijing, China.
5
 Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China.

These authors contributed equally to this work.

* Correspondence should be sent to yangyi@szbl.ac.cn (Y.I.Y) or gaoyq@pku.edu.cn (Y.Q.G).

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021

TABLE OF CONTENTS

Part I. Supplemental Texts

I Value function in RL‡ 1

II Policy function in RL‡ 1

III Improved training of RL‡ 2

IV Parametrization of RL‡ 3

V Expert Iterations in RL‡ 3

Algorithm S1 Shooting game in RL‡ 4

Algorithm S2 Algorithm synapsis of RL‡ 5

Part II. Simulation and Training Details

I Berezhkovskii-Szabo (BS) potential 6

II SN2 reaction 6

III Alanine dipeptide (Ala2) in explicit water 7

IV Claisen rearrangement in ionic liquid 8

Part III. Supplemental Figures 10

References

1

PART I. SUPPUPLEMTAL TEXTS

I. Value function in RL‡
The value function 0 ≤ 𝑝𝑤(TP|𝐑) ≤ 1 measures the

probability of yielding a successful transition path from the

initial configuration 𝐑. 𝑝𝑤(TP|𝐑) can be approximated by a

neural network with a sigmoid output. However, this

quantity is intrinsically random, hence cannot be simply

fitted by regression. We proposed the following algorithm to

optimize this function.

A. Training objective

Given an initial configuration leading to a successful

shooting, 𝐑𝑖 , we sample N failed shooting points {𝐑𝑗}
𝑗=1

𝑁
,

and calculate the following contrastive loss as suggested by

some graph learning and self-supervised learning studies, 1-2

1

; log

R
R

R R

w i
i N

w i w j

j

p
w

p p

 (S1)

where 𝑝𝑤(𝐑) is a shorthand notation for 𝑝𝑤(TP|𝐑).

Note that Eq. (S1) is similar to a soft-max function with a

single output logit corresponding to 𝑝𝑤(𝐑𝑖). Therefore, for

any successful shooting 𝐑𝑖 , ℒ(𝑤; 𝐑𝑖) is minimized if

𝑝𝑤(TP|𝐑𝑗) for any failed shooting 𝐑𝑗 is negligible

compared to 𝑝𝑤(TP|𝐑𝑖). In this sense, log 𝑝𝑤(TP|𝐑) takes a

flavour of energy, and it is the difference of log 𝑝𝑤(TP|𝐑)

but not the absolute value makes sense.

This loss function is sample-efficient, and it allows us to

optimize 𝑝𝑤 by shooting merely one or a few trajectories

from a given configuration. In all the experiments, we

exclusively shoot only one trajectory at a time for a given

initial configuration.

B. Regularization

Since it is not the absolute value of 𝑝𝑤(TP|𝐑) matters in

Eq. (S1), to stabilize the training (particularly to avoid

numerical instability in the case 𝑝𝑤(𝐑) ≪ 1), we regularized

Eq. (S1) with a cross-entropy (XE) term which helps limit

the overall drift of 𝑝𝑤(TP|𝐑),

 XE ; log R Ri w iw p (S2)

Finally, we adopt mini-batch optimization for ℒ(𝑤; 𝐑𝑖).

For each optimization step, we randomly sample a small

number of positive configurations, {𝐑𝑖}𝑖=1
𝑚 , and perform

negative sampling for each of the positive sample. The mini-

batch loss function thus reads,

1

1
; XE ;

 R R

m

i i

i

w w w
m

 (S3)

The mini-batch size 𝑚 and the regularization strength 𝜆

are two hyper-parameters. The size of the accompany

negative samples, N, is also a hyper-parameter, and usually

a value between 10 to 50 suffices as suggested by related

studies. 1, 3

C. Susceptibility

Given the value function 𝑝𝑤(TP|𝐑), we can analyze the

relevance of each atom’s coordinates to the transition

mechanism. Intuitively, if an atom plays a more important

role in the chemical transition, then the perturbation of its

position would cause more dramatic changes in 𝑝𝑤(TP|𝐑).

In light of this reasoning, we define the “susceptibility”

(denoted by 𝑆(𝐫𝑖)) of the value function w.r.t. the atom’s

position as follows, ,

 TP | rr R
ii wS p (S4)

where 𝐫𝑖 is the Cartesian coordinates of the i-th atom, and
‖∙‖ denotes the L2-norm of the vector.

II. Policy function in RL‡
The policy function 𝑉𝜃(𝐑) is equivalent to a bias potential

presented in most enhanced sampling approaches.4-6 We

proposed and experimented with two different optimization

strategies for 𝑉𝜃 in this paper.

A. Policy gradient optimization (PGO)

One approach to update the parametrized 𝑉𝜃(𝐑) is via the

expectation-maximization algorithm, also known as the

policy gradient7 in the literature of reinforcement learning.

We thus term this optimization strategy as Policy Gradient

Optimization (PGO). In PGO, we directly treat the value

function 𝑝𝑤(TP|𝐑) as a “reward”, and define an

“advantage” function 𝐴(𝐑) based on the reward function.

One common choice of 𝐴(𝐑) is,

log TP | log TP |

R

R R Rw w V
A p p (S5)

Note that ⟨log 𝑝𝑤(TP|𝐑)⟩𝑉𝜃(𝐑) serves as a baseline in

order to reduce the variance of the gradient estimator. It has

been shown that any alternative function which is

independent of the state (namely, 𝐑) can also be used as the

baseline. Then the unbiased gradient estimator of 𝑉𝜃(𝐑)

reads,

R

R R
V

A V (S6)

where 𝛽 is the inverse temperature, and ⟨∙⟩𝑉𝜃(𝐑) denotes the

expectation value over the equilibrium Boltzmann

distribution biased by 𝑉𝜃.

We remark here that, the performance of PGO strongly

relies on the advantage function which is generally non-

trivial to define, and careful reward shaping is usually

needed. One of the main challenges in reward shaping is to

balance the exploration with exploitation so as to avoid mode

dropping (i.e., being early trapped in sub-optimal solutions).

In this regard, Eq. (S6) could be less effective for

2

complicated reactions (e.g., where multiple distinct

transition states exist).

B. Variational targeted optimization (VTO)

Another learning strategy is inspired by targeted

adversarial optimized sampling (TALOS)8 and variationally

enhanced sampling (VES).9 Specifically, given the value

function 𝑝𝑤(TP|𝐑), we can formulate a target distribution

𝑝T(𝐑) where regions of higher value also admit higher

probability density. For instance, arguably the most

straightforward choice of the target is to equate 𝑝T(𝐑) with

𝑝𝑤(TP|𝐑). More reasonable choices of 𝑝T which can better

trade-off exploration and exploitation will be introduced in

the next section.

Once the target distribution is set, our goal is to train a

policy function 𝑉𝜃(𝐑) which could induce a biased

equilibrium distribution, denoted by 𝑝𝜃 ∝ exp[−𝛽(𝑈 +
𝑉𝜃)], identical to the target distribution 𝑝T. This goal can be

achieved via minimizing a strict divergence between 𝑝T and

𝑝𝜃 . For example, in this paper we minimized the Kullback-

Leibler divergence, 𝐷KL(𝑝T||𝑝𝜃), following the gradient:10-

11

T

KL T ||

p p

D p p V V (S7)

Besides, the gradient for another strict divergence,

Wasserstein-1 distance, 𝐷W(𝑝T||𝑝𝜃) , has been separately

derived in TALOS,8 and can also be used for optimizing

𝑉𝜃(𝐑).

III. Improved training of RL‡
Like any reinforcement learning tasks, RL‡ has to deal

with issues including partial sampling and moving

distributions (or dynamic datasets). Therefore, we adopted

several useful techniques widely adopted in reinforcement

learning, to make the training progress of RL‡ more robust

and efficient.

A. Experience replay

It is known that the optimality of a value function is

independent of the policy function (or the sampling

procedure). So in order to reduce the dependence of the

convergence of the value function on the policy function, we

prepare two buffer sets ℬ , one containing all previously

successful shootings (called positive buffer) and the other

containing all failed shootings (called negative buffer).

In one Expert Iteration, we not only shoot trajectories

initialized at the newly sampled configurations, but also at

some configurations randomly drawn from both buffer sets.

Consider that in a first trial, a particular configuration 𝐑

leads to a successful transition path and enters into the

positive buffer. However, 𝐑 may also fail and hence into the

negative buffer. Note that we do not override the buffers, so

configurations with higher chances of winning will appear

more frequently in the positive buffer. In this way, the

randomness of the shooting outcomes is implicitly taken into

account. During each optimization step, we randomly select

a mini-batch of samples from both positive and negative

buffers and feed them into Eq. (S3) to calculate the loss for

the value function.

Furthermore, since generating data by real samplers (e.g.

MD engines) are usually expensive, we also implement

experience replay to reduce the cost of generating data and

maximize the sample efficiency. Our reasoning is that, the

recently sampled data are statistically close to the latest

samples, hence can be jointly used via proper re-weighting

according to importance sampling. This idea is similar to

some reinforcement learning algorithms including trusted-

region policy optimization12 and proximal policy

optimization.13 Let 𝑉(𝑡)(𝐑) and 𝑍(𝑡)denote the bias potential

and the corresponding partition function at the training

iteration 𝑡, respectively. To replay the experience, one needs

to estimate the ratio of the partition functions 𝑍(𝑡) between

different 𝑡’s. This can be conveniently done using multi-

ensemble re-weighting techniques such as weighted

histogram analysis (WHAM)14 and multistate Bennett

acceptance ratio (MBAR).15

B. Multi-agent exploration

In order to obtain a robust estimate of ensemble averages,

we borrow the idea of advantage actor critic reinforcement

learning16 that to launch multiple samplers (or agents in

terms of reinforcement learning) synchronously, and split the

data collected by all the samplers into mini-batches to train

the value and policy functions. Such practice effectively

encourages exploration, not only leading to faster

convergence, but also avoiding the early trap in the mode-

collapsed local minima. In the research of enhanced

sampling, similar strategy was adopted in the multiple-

walker metadynamics17 which usually ensures faster

convergence than vanilla metadynamics.

C. Balance exploration and exploitation

PGO strongly relies on the choice of advantage or reward

function. It can be found that a reward as defined in Eq. (S5)

will be ineffective for PGO (Eq. (S6) if no positive feedback

has been observed. Therefore, exploration should be

accounted for separately if necessary. For example, one can

design a reward function proportional to the free energy of

the state. Besides, many enhanced sampling techniques can

be used for exploration.

In VTO, we can readily balance the exploration with the

exploitation by explicitly re-writing the target distribution

into two components, one for exploration while the other for

exploitation. The target distribution reads as follows (the

same as Eq. (3) in the main text),

 T exploit explorelog log 1 log p p p (S8)

Given a set of order parameters 𝐬(𝐑) which are used to

define the reactant and product, we can define a uniform

distribution over 𝐬 as 𝑝explore . A well-tempered target

distribution over 𝐬 can also be adopted for the same

purpose.11 Even if there are no order parameters available,

one can still write the explorative distribution explicitly as in

3

integrated tempering sampling18-19 or implicitly as in

temperature replica exchange methods.5

As explained in the main text, the exploitive component is

based on the value function,

 exploit TP | Rwp p (S9)

The hyper-parameter 𝛼 in Eq. (S8) is used to trade

exploration for exploitation. When 𝛼 is close to zero, the

sampling is dominant by exploration; When 𝛼 approaches 1,

the sampling is dominant by exploitation. We thus term 𝛼 as

the “exploitation factor”.

Since the exploitive distribution (Eq. (S9)) is learned from

scratch and gradually updated during RL‡, it would be very

inaccurate in the beginning of training. Moreover, at the

beginning of the training when positive feedbacks (i.e.,

successful shootings) are rare, so exploration is very

important. Following these considerations, during training,

we recruited a schedule to gradually tune 𝛼 from 0 to an

asymptotic threshold 𝛼max ≤ 1 . We found that usually a

threshold 𝛼max between 0.5 and 0.6 suffices for enhanced

sampling of the transition states, meanwhile preserves

adequate exploration (or coverage) over the rest of the

configurational space.

IV. Parametrization of RL‡
Many functional forms are optional for the value function

policy function 𝑉𝜃. For example, it can be a linear expansion

of certain basis functions where are the expansion

coefficients;9 or can be a non-linear neural network, where

 are the built-in parameters of artificial neural networks

(ANNs).20 On the other end, the value function 𝑝𝑤 is

exclusively approximated by ANNs in this paper.
A. Orthonormal polynomials or functions

If the input to the policy network is low-dimensional, we

recommend orthonormal basis functions as 𝑉𝜃 , and the

expansion coefficients are the learnable parameters. For

periodic input variables 𝐬(𝐑), like torsional angles, Fourier

expansions can be adopted. For non-periodic 𝐬(𝐑) ,

Legendre or Chebyshev polynomials can be used.

Orthonormal polynomials usually yield smooth energy

function, so generally no additional regularization is needed.

B. Multi-layer perceptron (MLP)

MLPs are most commonly seen ANNs consisting of fully

connected hidden layer. The input of a MLP, 𝐬(𝐑), should

trans-rotational invariant features of the molecular system.

More importantly, each dimension of the input vector 𝐬

should be indexible. MLP will transform the input vector to

hidden features, and finally yields an output vector. We

experimented with MLP in conjunction with neural

allocative potential11 as a policy function in the numerical

model system.

C. Graph Neural Network (GNN)

Molecular systems consisting of particles (e.g., atoms) can

be viewed as a graph, where vertices (or nodes) represent the

particles while the interactions between particles can be

modeled by graphical edges. Graph neural networks hence

can be used to model molecular systems. GNNs exhibit a

nice property that preserves the trans-rotational invariance

and permutation invariance of the many-particle system.21

There are several recently developed models that specifically

deal with molecular systems, including SchNet22 and

PhysNet.23 Both models directly learn a function based on

the Cartesian coordinates 𝐑 and the type of the particles.

Particularly, in some experiments, SchNet was used as the

value functions 𝑝𝑤′(TP|𝐑) for post-analysis of the reaction

mechanism.

D. Neural allocative potentials (NAP)

We note here that it is not the absolute value but the

difference of energy makes physical sense. Based on this

observation Zhang et al. proposed a new output layer for

ANN-based potential energy functions, called neural

allocative potentials (NAP)11. Here we recapitulated the

main ideas behind NAP. Firstly, a lower bound and an upper

bound for the bias potential is chosen, and "quantized" into

𝐾 fixed levels {𝐸𝑘}𝑘=1..𝐾 . Then the following functional

form is introduced,

1

;

R R

K

k k

k

V E (S10)

where ∑ 𝜔𝑘(𝐬; 𝜃)𝑘=1,𝐾 = 1 corresponds to the output of an

ANN with a soft-max output layer. Therefore, NAP is

nothing but a new output layer that can be straightforwardly

equipped with any ANNs.

Now the problem of learning a scalar is transformed into

learning a simplex {𝛼𝑘}𝑘=1..𝐾. Following this form, NAP is

trained to allocate proper amount of energy to configuration

𝐬 , rather than estimate the absolute value of the bias

potential.

V. Expert Iterations in RL‡
Training of RL‡ is based on Expert Iterations (EXIT’s).24

In other words, RL‡ is gradually improved through a series

of EXIT’s. Each Expert Iteration consists of four individual

steps that together form a loop:

Step 1. Sample according to 𝑝shoot as Eq. (1) in the main

text, where the Expert performs exploration over the

configuration space.

Step 2. Shoot trajectories from the sampled coordinates

with random momenta (Algorithm S1), and record the game

results into replay buffers.

Step 3. Sample from the replay buffers and update the

value function according to Eq. (S3).

Step 4. Update the policy function 𝑉𝜃, either through PGO

as Eq. (S6) or VTO as Eq. (S7). Use the updated 𝑉𝜃 for

𝑝shoot (thus the Expert is improved), and return to Step 1.

We remark here that, Steps 1 and 2 correspond to the

Expert’s action, to discover promising configurations

leading to the victory. Steps 3 and 4 correspond to the

training of the Apprentice, who summarizes the positive

4

feedbacks provided by the Expert. Based on the improved

Apprentice (i.e., the updated value and policy functions), the

action of the Expert is optimized. Synapses of the “shooting

game” and the training protocol of RL‡ are summarized in

Algorithm S1 and Algorithm S2, respectively.

As in many reinforcement learning tasks, it is hard to

define or reach a definitive optimal solution, so usually we

will stop at a fairly satisfying model. We stop the training of

RL‡ according to two criteria: i) The loss for value function,

Eq. (S3), becomes steady and no longer diminishes, and ii)

The chance of winning the game according to 𝑝shoot exceeds

a user-specified threshold or no longer increases (the default

threshold in this paper is 10%). For ANNs, we adopt Adam25

as the optimizer. If basis functions are used as the policy

function, the Averaged Stochastic Gradient Descent

(ASGD)26 is optional as optimizer as suggested by VES.9

Besides, by adopting the advanced optimization techniques

including experience replay and multi-agent exploration as

introduced earlier, we can further expedite and stabilize the

training of RL‡.

Algorithm S1. Shooting game in RL‡

1:
Define: reactant and product; inverse-temperature 𝛽; step-size ∆𝑡, maximal

simulation length 𝑡max.

2: Input: initial configurations {𝐑0}.

3: Sample random momenta {𝐩0} according to Maxwell distribution at 𝛽.

4: Initialize Leap-Frog integrator at {𝐑0, 𝐩0}

5: While Rt not belong to reactant or product and maxt t , do

6: 1 1LeapFrog ,, , R pR p t tt t t Forward integration

7: End While

8: While R t not belong to reactant or product, do

9: 1 1LeapFrog ,, ,
 R pR pt t t t t Reversed integration

10: End While

11: If {𝐑𝑡} and {𝐑−𝑡} end up in different states, we win the game.

5

Algorithm S2. Reinforcement Learning of Transition States (RL‡)

1:
Input: Initialize value network 𝑝𝑤 , policy network 𝑉𝜃 and void replay

buffers ℬ.

2: Set learning rates 𝛼𝑤 and 𝛼𝜃 for 𝑤 and 𝜃, and optimizer’s hyper-parameters

3: While converge criteria not met, do

4: Run MD/MC under 𝑈 + 𝑉𝜃, collect samples {𝐑MD} Expert’s action

5: Draw random samples {𝐑ℬ} from replay buffers experience replay

6: Shooting from {𝐑MD} ∪ {𝐑ℬ} according to Algorithm S1.

7: Update replay buffers ℬ

8: For 0 wt n train 𝑝𝑤 for wn steps

9: Draw mini-batch of samples from ℬ to calculate ℒ(𝑤). Eq. (S3)

10: Adam , , w ww w w update value network

11: End For

12: If VTO, do

13: Update the exploitation factor 𝛼.

14: Update the target distribution 𝑝T. Eq. (S8)

15: End If

16: For 0 t n train 𝑉𝜃 for n steps

17: Draw mini-batch of samples from {𝐑MD} to calculate 〈∇𝜃𝑉𝜃(𝐬)〉𝑝𝜃
.

18: Calculate ∇𝜃ℒ(𝜃) via PGO or VTO Eq. (S6) or (S7)

19: Adam / ASGD , , update policy network

20: End For

21: End While

6

PART II. SIMULATION AND TRAINING DETAILS

I. Berezhkovskii-Szabo potential
We first illustrated how RL‡ works in an interpretable way

on a model system, the Berezhkovskii-Szabo (BS)

potential.27 This 2-dimensional model potential consists of

two local minima separated by an energy barrier (Fig. S1A),

and captures key features of chemical reactions in a

simplified manner.

A. Simulation setup

Given the inverse temperature , the BS potential27 takes

the following form:

22

,
2

x y
U x y U x

where

22
0 0

2 2
0 0

22
0 0

,
2 2

,
2 2 2

,
2 2

x x x
U x x

x xx
x

x x x
x

For our simulations, we chose 1 , 0 2.2x , 2 4 ,

2 2
0 4x , and 2 21.01 . Besides, the diagonal

diffusion tensor used in the overdamped Langevin equation

was set to be:

2
0

0 3

0 2
0

3

xx

yy

D

D

D

The resulting white-noised Langevin dynamics was

simulated with a discrete time integration step of 0.01.

B. RL‡ models

In the shooting game, the reactant is defined as

(𝑥 < −2, 𝑦 < −2), and the product is (𝑥 > 2, 𝑦 > −2).

The value function 𝑝𝑤(TP|(𝑥, 𝑦)) is a MLP which inputs

(𝑥, 𝑦). The MLP contains 3 hidden layers, each of 64 units

and an ELU activation function.28 The output layer

corresponds to a single unit with sigmoid activation function.

The policy function 𝑉𝜃(𝑥, 𝑦) is also a MLP, which inputs
(𝑥, 𝑦) and contains 2 hidden layers with hyperbolic tangent

activation. The output layer takes the form of NAP (Eq.

(S10)), consisting of 11 logits which uniformly quantize the

energy range of [−5,5] kBT. Besides, we implemented

spectral normalization29 over the weight matrices of the MLP

to regularize the gradients.

C. Training details

We regularized the value network as in Eq. (S2), with the

regularization strength 𝜆 = 0.1 . We optimized the value

network according to Eq. (S3), with a mini-batch 𝑚 = 10

positive samples, and each positive sample is accompanied

by 𝑁 = 50 negative samples. The Adam optimizer with a

learning rate of 10-3 was adopted (the hyper-parameter 𝛽1 =
0.8 and 𝛽2 = 0.9).

Given a policy function 𝑉𝜃 , we ran a biased Langevin

dynamics for 5000 steps, and used the collected samples to

update the policy network. In this model, such a short

Langevin simulation suffices to generate near-equilibrium

samples, so we did not perform additional exploration or pre-

training, and directly optimized the policy function via PGO

(Eq. (S6)). The Adam optimizer with default hyper-

parameters and a learning rate of 2 × 10−4 was adopted.

In one Expert Iteration, 𝑛𝑤 = 𝑛𝜃 = 5 steps of

optimization were performed for both 𝑝𝑤 and 𝑉𝜃 ,

respectively (Algorithm S2). In each EXIT, we launched 100

random shootings. Totally 100 Expert Iterations were

executed, and the overall shooting moves amounts to 10,000.

The final successful shooting probability is about 12% (Fig.

S1B).

D. Results

From Fig. S1B we can see that the training of RL‡ is very

efficient, leading to a converged value function (with ℒ(𝑤)

no longer diminishing significantly) within 50 EXIT’s, and

the average winning chance exceeds the prescribed threshold

(10%) after 80 EXIT’s. Besides, RL‡ is fairly sample-

efficient in that only 10,000 random shootings were

performed in total. After training is done, we plotted the

policy function (Fig. S1C) and found it clearly diverts the

sampling from the reactant or product regions to the TS

region. This form of 𝑉𝜃 reminds one of the harmonic bias

potential centered at the TS as adopted in umbrella sampling.

However, unlike umbrella sampling, 𝑉𝜃 in RL‡ is learned

without any knowledge of the reaction coordinate. On the

other end, we can interpret the reaction mechanism based on

the value function (Fig. S1D). As can be seen in Fig. S1D,

the region of highest 𝑝𝑤(TP|𝑥, 𝑦) values corresponds

exactly to the dividing surface of the BS potential.

Additionally, we can track the training process of RL‡ by

plotting the samples from 𝑝shoot at different training

iterations (Fig. S1E). We find that the sampled

configurations become increasingly concentrated around the

TS region. Particularly after 100 EXIT‘s, the sampled

configurations are located exactly around the TS, in

agreement with the expected effect brought by the optimized

policy 𝑉𝜃 . This example demonstrates that RL‡ can be

trained tabula rasa hence allows us to reveal the reaction

mechanisms with minimal a priori expertise or assumptions.

II. SN2 reaction

7

A. Simulation setup

The MD simulations of the SN2 reaction in vacuum were

performed using the QM/MM module of SANDER program

at AmberTools 17 software package.30 All the atoms of the

system are set as the QM part using the semi-empirical PM6

model.31 No constraint is added on chemical bonds, and no

cut-off is used for the non-bonding interactions. The

simulations temperature was kept at 300 K, and the time step

was 1 fs. During the simulation, harmonic restraining walls

had been added on 𝑑1 and 𝑑2 (Fig. 2A in the main text) for

distances larger than 6 Å to prevent the atoms moving too far

away, which was utilized using the bias UPPER_WALL in

the PLUMED232 plug-in library (KAPPA is 1000 kJ/mol).

B. RL‡ models

In the shooting game, we selected 𝐬 = (𝑑1, 𝑑2) as the

order parameter for characterization of reactant and product

(Fig. 2A in the main text). The reactant is defined as

(1Å < 𝑑1 < 2Å, 𝑑2 > 4Å) , and the product is (𝑑1 >

4Å, 1Å < 𝑑2 < 2Å).

During EXIT, we constructed a value function 𝑝𝑤(TP|𝐬)

operating on 𝐬 but not the coordinates of the entire system.

𝑝𝑤 is a MLP contains 2 hidden layers, each of 128 units and

an ELU activation function. The MLP inputs (𝑑1, 𝑑2), and

the vector yielded by the last hidden layer is denoted by 𝐳12.

We took account of that 𝑝𝑤 should be symmetric w.r.t. the

exchange of 𝑑1 and 𝑑2, so we also applied the same MLP but

with the input transposed, (𝑑2, 𝑑1) , and yielded another

hidden vector 𝐳21. We then summed over 𝐳12 and 𝐳21 before

feeding forward to the final sigmoid output unit.

The policy function 𝑉𝜃(𝐬) was also built upon 𝐬, and was

expanded by Legendre polynomials,

 1 2 1 2

, 0

,

K

ij i j

i j

V d d f d f d

where 𝑓𝑖 denotes the i-th order Legendre polynomial with

𝐾 = 25 . �̅� is a generalized sigmoid function33 which

squashes 𝑑 into the range of [-1,1] supported by the

Legendre polynomials.

C. Training details

We regularized the value network 𝑝𝑤(TP|𝐬) with the

regularization strength 𝜆 = 0.5 (Eq. (S2)). The value

network was optimized according to Eq. (S3) with a mini-

batch 𝑚 = 20 positive samples, and each positive sample is

accompanied by 𝑁 = 50 negative samples. The Adam

optimizer with a learning rate of 10−4 and default hyper-

parameters was adopted.

Given a policy function 𝑉𝜃 , we performed multi-agent

exploration with 10 parallel QM/MM MD simulations

according to Eq. (1) in the main text, and each simulation

lasted for 2 ps. The collected samples were then used to

update the policy network via PGO (Eq. (S6)). Since the

reaction can rarely take place in an unmodified PES, we

performed a pre-training for exploration prior to PGO, where

a metadynamics simulation over 𝐬 was launched. The

samples collected during metadynamics was used to

approximate the FES (Fig. 2B in the main text). We also

implemented experience replay to expedite the training of

the policy network. We adopted Adam optimizer with a

learning rate of 0.1 and the hyper-parameters were chosen as

𝛽1 = 0.8 and 𝛽2 = 0.9. Optimization of both functions was

executed on Tensorflow (v1.15.0).

In one Expert Iteration, 𝑛𝑤 = 10 steps of optimization

were performed for 𝑝𝑤 and 𝑛𝜃 = 2 for 𝑉𝜃 , respectively

(Algorithm S2). In each EXIT, we launched 100 random

shootings. Totally 300 Expert Iterations were executed, and

the overall shooting moves amounts to 30,000. The final

successful shooting probability is about 15%.

D. Susceptibility analysis

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑)

based on the obtained transition state ensembles. 𝑝𝑤′(TP|𝐑)

operates on the Cartesian coordinates of all the atoms.

𝑝𝑤′(TP|𝐑) takes the default architecture of a SchNet,22

except that we replaced the original the output layer by a

single output unit with a sigmoid activation function.

Since the training will suffer from disappeared gradient

during backpropagation due to sigmoid function, then we

regularized the input to sigmoid layer 𝐡(𝐑𝑖) according to

equation below with the regularization strength 𝜆EC = 10−4.

2

ECEC '; ';R h Ri iw w (S11)

We also regularized the value network 𝑝𝑤′(TP|𝐑) with the

regularization strength 𝜆 = 0.001 (Eq. (S2)). The value

network was optimized with a mini-batch 𝑚 = 10 positive

samples, and each positive sample is accompanied by 𝑁 =
20 negative samples.

After optimization of 𝑝𝑤′(TP|𝐑) was done, the

susceptibility was computed for each atom according to Eq.

(S4). The susceptibility of each atom was then averaged over

the transition state ensemble and reported in Fig. 2E in the

main text.

III. Alanine dipeptide (Ala2)
A. Simulation setup

For the alanine dipeptide in aqueous solution, no ions were

added since the terminal of the alanine was neutrally blocked

(namely, ACE-ALA-NME) surrounded by 384 SPCE34

water molecules. All the simulations were executed on

AMBER17 package30 using FF99SB force field 35

parameters. The aqueous solution system was put in a

rectangular simulation box with periodic boundaries on.

SHAKE algorithm36 was adopted to constrain all covalent

bonds involving hydrogen atoms, and a 2 fs time step was

permitted. The system underwent a standard relaxation

procedure and equilibrated to an NTP ensemble (300 K,

1atm). To equilibrate the system to the appropriate volume,

the pressure of the system was adjusted to 1 atm by the

Berendsen weak-coupling algorithm37 with the relaxation

time constants of 0.2 ps under another 1 ns long normal MD.

B. RL‡ models

8

In the shooting game, we defined the reactant, i.e., the cis-

conformation, corresponding to 30° < 𝜙 < 90°; while the

product, i.e., the trans-conformation, corresponds to

−170° < 𝜙 < −60°.

During EXIT training, we constructed the value on 𝐬 =
(𝜙, 𝜑). The value function 𝑝𝑤(TP|𝐬) is a MLP. To account

for the periodicity of 𝐬 , we first transform 𝐬 into a torus

vector,

 torus cos ,cos ,sin ,sin s

Then 𝐬torus is fed into the MLP composed of 2 hidden

layers, each with 128 hidden units and ELU activation

function. The output layer corresponds to a single unit with

sigmoid activation function.

The policy 𝑉𝜃(𝐬) is also a function of the 2D (𝜙, 𝜑) space.

Since 𝜙 and 𝜑 are periodic variables, we expanded 𝑉𝜃(𝜙, 𝜑)

using the Fourier polynomial:

0 0

cos sin cos sin

j Ni N

ij

i j

V i i j j

where 8N .

C. Training details

The value network 𝑝𝑤(TP|𝐬) was regularized according to

Eq. (S2) with 𝜆 = 0.5 . We optimized the value network

using a mini-batch of 𝑚 = 20 positive samples, and each

positive sample is accompanied by 𝑁 = 50 negative

samples. The Adam optimizer with a learning rate of 10−4

and default hyper-parameters was adopted. The optimization

of 𝑝𝑤(TP|𝐬) was done in Tensorflow (v1.15.0).

Under a policy function 𝑉𝜃(𝐬), we performed multi-agent

exploration with 10 parallel MD simulations according to

Eq. (1) in the main text, and each trajectory was 20 ps in

length. Experience replay was also adopted to expedite the

training of 𝑉𝜃. The collected samples were used to update 𝑉𝜃

via VTO as in Eq. (S7). We chose a uniform distribution over

𝐬 as 𝑝explore , and the target distribution 𝑝T was defined

according to Eq. (S8). During training, the exploitation

factor 𝛼 was gradually increased from 0 to 0.6. We

implemented ASGD optimizer built in PLUMED2, with a

learning rate of 0.5 to update 𝑉𝜃.

In one Expert Iteration, 𝑛𝑤 = 10 steps of optimization

were performed for 𝑝𝑤 and 𝑛𝜃 = 200 for 𝑉𝜃 , respectively

(Algorithm S2). In each EXIT, we launched 100 random

shootings. Totally 240 Expert Iterations were executed, and

the overall shooting moves amounts to 24,000. The final

successful shooting probability is about 11%.

D. Susceptibility analysis

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑)

based on the obtained transition state ensembles. The model

architecture is the same as in SN2 reaction.

The value network 𝑝𝑤(TP|𝐬) was regularized according to

Eq. (S2) and Eq. (S11) with 𝜆 = 0.01 and 𝜆EC = 10−4. We

optimized the value network using a mini-batch of 𝑚 = 10

positive samples, and each positive sample is accompanied

by 𝑁 = 20 negative samples. The Adam optimizer with a

learning rate of 10−4 and default hyper-parameters was

adopted. The optimization of 𝑝𝑤′(TP|𝐑) was done in

Tensorflow (v1.15.0).

After optimization of 𝑝𝑤′(TP|𝐑) was done, the

susceptibility was computed for each atom according to Eq.

(S4). Since we are interested in the solvent effects, we

calculated the radial averaged susceptibility for the solvent

atoms. Specifically, for a given solvent atom type 𝑧 (e.g.,

oxygen or hydrogen), RAS of atom type 𝑧 as a function of

radial distance 𝑟 is defined as,

COM

COM

RAS ;

r r R r

r R r

z z z

z z

S r d
r z

r d
 (S12)

where 𝒓𝑧 stands for the positions of all 𝑧-type atoms. 𝑆(𝒓𝑧)

is defined as Eq. (S4), 𝐑COM is the coordinate of Ala2’s

center-of-mass, and 𝛿 denotes the Dirac-delta function. We

computed the RAS for oxygen and hydrogen, respectively,

and reported the results in Fig. 3G in the main text.

IV. Claisen rearrangement
A. Simulation setup

The simulation was performed at the QM/MM interface on

AMBER14 MD platform. The self-consistent charge density

functional tight-binding (SCC-DFTB) method 38 was

adopted to approximate the quantum mechanical

Hamiltonian of the reactant molecule. The solvent is a kind

of ionic liquid, containing a pair of soluble ion pairs termed

as [C2mim]+ [NTf2]- (Fig. S3). We adopted the classical force

field developed by Sieffert and Wipff39-40 to describe the

solvent molecular ions and SHAKE was imposed on the

solvent. No additional ions were added.

The system underwent a standard relaxation procedure and

equilibrated to an NTP ensemble (300 K, 1 atm) lasting for

1-ns long normal MD. A cutoff of 10.0 Å was applied for

calculating nonbonding interactions. All the simulations

were performed with a 1-fs time integration step (no SHAKE

on QM-treated molecule) and with periodic boundary

condition.

B. RL‡ models

In the shooting game, we selected 𝐬 = (𝑑1, 𝑑2) as the

order parameter to distinguish the reactant from product

(Fig. 4A in the main text). The reactant is defined as

(1Å < 𝑑1 < 1.6Å, 𝑑2 > 2.5Å) , and the product is (𝑑1 >

3Å, 1Å < 𝑑2 < 1.5Å).

During EXIT training, a MLP which inputs 𝐬 was

employed as the value function 𝑝𝑤(TP|𝐬) . This MLP is

stacked with 2 hidden layers, each consisting of 128 units

with ELU activation function. The output layer is a single

sigmoid unit.

The policy function 𝑉𝜃(𝐬), which also operates on the 2D

(𝑑1, 𝑑2) space, is expanded by Legendre polynomials. The

input 𝑑 was first linearly scaled into −1 ≤ �̅� ≤ 1, and 𝑉𝜃

takes the form of

9

 1 2 1 2

, 0

,

K

ij i j

i j

V d d f d f d

where 𝑓𝑖 denotes the i-th order Legendre polynomial, and

𝐾 = 30.

C. Training details

We regularized the value network 𝑝𝑤(TP|𝐬) according to

Eq. (S2) with 𝜆 = 0.5, and minimized Eq. (S3) using a mini-

batch of 𝑚 = 20 positive samples. Each positive sample

was accompanied by 𝑁 = 50 negative samples. The Adam

optimizer with a learning rate of 10−4 and default hyper-

parameters was adopted. The optimization of 𝑝𝑤(TP|𝐬) was

carried out on Tensorflow (v1.15.0).

In each training iteration, 10 parallel QM/MM MD

simulations were performed for multi-agent exploration

under a biased potential 𝑉𝜃(𝐬) according to Eq. (1) in the

main text, and each individual simulation was 20-ps long.

The collected samples were used to update 𝑉𝜃 via VTO as in

Eq. (S7). We chose a uniform distribution over 𝐬 as 𝑝explore,

and the target distribution 𝑝T was defined according to Eq.

(S8). During training, the exploitation factor 𝛼 was

gradually increased from 0 to 0.5. We implemented ASGD

optimizer built in PLUMED2, with a learning rate of 0.5 to

update 𝑉𝜃.

In one Expert Iteration, 𝑛𝑤 = 10 steps of optimization

were performed for 𝑝𝑤 , and 𝑛𝜃 = 100 for 𝑉𝜃 , respectively

(Algorithm S2), and 100 random shootings were launched.

Totally 400 Expert Iterations were executed, and the overall

shooting moves amounts to 40,000. The final successful

shooting probability is about 10%.

D. Susceptibility analysis

After EXIT, we trained a new value function 𝑝𝑤′(TP|𝐑)

based on the obtained transition state ensembles. The model

architecture is the same as in SN2 reaction. Since the solvent

contains too many atoms, we first coarse-grained each

solvent molecule into a single particle located at its center-

of-mass. 𝑝𝑤′(TP|𝐑) then incorporates the coordinates of all

the solute atoms and the coarse-grained solvent particles.

The value network 𝑝𝑤′(TP|𝐑) was regularized according

to Eq. (S2) and Eq. (S11) with 𝜆 = 0.01 and 𝜆EC = 10−4 .

We optimized the value network using a mini-batch of 𝑚 =
10 positive samples, and each positive sample is

accompanied by 𝑁 = 20 negative samples. The Adam

optimizer with a learning rate of 10−4 and default hyper-

parameters was adopted. The optimization was done in

Tensorflow (v1.15.0).After optimization of 𝑝𝑤′(TP|𝐑) was

done, the susceptibility was computed for each solute atom

according to Eq. (S4), and was then averaged over the

transition state ensemble and reported in Fig. 4E. We also

calculated the radial averaged susceptibility (RAS) for the

solvent molecules (as shown in Fig. 4F). Besides, we

showcased the instantaneous susceptibility (i.e., not

averaged over any other structures) of a snapshot (Fig. 4G),

where each solvent molecule was colored as a whole

according to the susceptibility of its corresponding coarse-

grained particle.

10

PART III. SUPPLEMENTAL FIGURES

Figure S1. RL‡ for BS model potential. (A) Colored contour map of the BS potential energy surface (PES). (B) Average

winning chance (black line) and loss of the value function ℒ(𝑤) (red line) plotted against Expert Iterations. A typical stop-

threshold for training (winning chance exceeds 10%) is shown in dashed line. Indeed, we trained the value and policy functions

for 100 iterations. (C) Contour map of the final policy function 𝑉𝜃(𝑥, 𝑦). Transparent contour lines of the PES are shown in

background. (D) Contour map of the final value function log 𝑝𝑤(TP|𝑥, 𝑦). Transparent contour lines of the PES are shown in

background. (E) Samples from 𝑝shoot at different Expert Iterations, colored according to the value function log 𝑝𝑤(𝑥, 𝑦); Grey

contour lines of the PES are shown in background.

Figure S2. Statistics of the transition path duration (TPD) of the SN2 reaction. The histogram of the TPD was computed

according to the transition path ensemble collected by RL‡. The red dashed line stands for a log-normal fit of the TPD histogram.

11

Figure S3. Structures of the ionic liquid used as solvent for the Claisen rearrangement. The cation is [C2min]+ (left) and the

anion is [NTf2]- (right).

12

REFERENCES

1. Hamilton, W.; Ying, Z.; Leskovec, J. In Inductive

representation learning on large graphs, Advances in

Neural Information Processing Systems, 2017; pp 1024-

1034.

2. Oord, A. v. d.; Li, Y.; Vinyals, O., Representation

Learning with Contrastive Predictive Coding. 2018.

3. Nickel, M.; Kiela, D. In Poincaré embeddings for learning

hierarchical representations, Advances in neural

information processing systems, 2017; pp 6338-6347.

4. Abrams, C.; Bussi, G., Enhanced sampling in molecular

dynamics using metadynamics, replica-exchange, and

temperature-acceleration. Entropy 2014, 16 (1), 163-199.

5. Okamoto, Y., Generalized-ensemble algorithms:

enhanced sampling techniques for Monte Carlo and

molecular dynamics simulations. Journal of Molecular

Graphics and Modelling 2004, 22 (5), 425-439.

6. Yang, Y. I.; Shao, Q.; Zhang, J.; Yang, L.; Gao, Y. Q.,

Enhanced sampling in molecular dynamics. The Journal

of Chemical Physics 2019, 151 (7), 070902.

7. Williams, R. J., Simple statistical gradient-following

algorithms for connectionist reinforcement learning.

Machine learning 1992, 8 (3-4), 229-256.

8. Zhang, J.; Yang, Y. I.; Noé, F., Targeted Adversarial

Learning Optimized Sampling. journal of physical

chemistry letters 2019, 10 (19), 5791-5797.

9. Valsson, O.; Parrinello, M., Variational approach to

enhanced sampling and free energy calculations. Physical

review letters 2014, 113 (9), 090601.

10. Chaimovich, A.; Shell, M. S., Coarse-graining

errors and numerical optimization using a relative entropy

framework. The Journal of chemical physics 2011, 134

(9), 094112.

11. Zhang, J.; Lei, Y.; Yang, Y. I.; Gao, Y., Deep

Learning for Variational Multi-Scale Molecular

Modeling. ChemRxiv. Preprint. 2019,

https://doi.org/10.26434/chemrxiv.9640814.v4.

12. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.;

Moritz, P., Trust Region Policy Optimization. In

International Conference on Machine Learning, 2015; pp

1889-1897.

13. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford,

A.; Klimov, O., Proximal Policy Optimization

Algorithms. 2017.

14. Kumar, S.; Rosenberg, J. M.; Bouzida, D.;

Swendsen, R. H.; Kollman, P. A., The weighted histogram

analysis method for free ‐ energy calculations on

biomolecules. I. The method. Journal of computational

chemistry 1992, 13 (8), 1011-1021.

15. Shirts, M. R.; Chodera, J. D., Statistically optimal

analysis of samples from multiple equilibrium states. The

Journal of chemical physics 2008, 129 (12), 124105.

16. Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.;

Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. In

Asynchronous methods for deep reinforcement learning,

International conference on machine learning, 2016; pp

1928-1937.

17. Raiteri, P.; Laio, A.; Gervasio, F. L.; Micheletti, C.;

Parrinello, M., Efficient reconstruction of complex free

energy landscapes by multiple walkers metadynamics.

The journal of physical chemistry B 2006, 110 (8), 3533-

3539.

18. Gao, Y. Q., An integrate-over-temperature

approach for enhanced sampling. The Journal of chemical

physics 2008, 128 (6), 064105.

19. Yang, L.; Liu, C.-W.; Shao, Q.; Zhang, J.; Gao, Y.

Q., From thermodynamics to kinetics: enhanced sampling

of rare events. Accounts of chemical research 2015, 48

(4), 947-955.

20. Schneider, E.; Dai, L.; Topper, R. Q.; Drechsel-

Grau, C.; Tuckerman, M. E., Stochastic neural network

approach for learning high-dimensional free energy

surfaces. Physical review letters 2017, 119 (15), 150601.

21. Battaglia, P. W.; Hamrick, J. B.; Bapst, V.;

Sanchez-Gonzalez, A.; Zambaldi, V. F.; Malinowski, M.;

Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.;

Gülçehre, Ç.; Song, H. F.; Ballard, A. J.; Gilmer, J.; Dahl,

G. E.; Vaswani, A.; Allen, K. R.; Nash, C.; Langston, V.;

Dyer, C.; Heess, N.; Wierstra, D.; Kohli, P.; Botvinick,

M.; Vinyals, O.; Li, Y.; Pascanu, R., Relational inductive

biases, deep learning, and graph networks. 2018.

22. Schütt, K. T.; Kindermans, P. J.; Sauceda, H. E.;

Chmiela, S.; Tkatchenko, A.; Müller, K. R., SchNet: A

continuous-filter convolutional neural network for

modeling quantum interactions. In Neural Information

Processing Systems, 2017; pp 992-1002.

23. Unke, O. T.; Meuwly, M., PhysNet: A Neural

Network for Predicting Energies, Forces, Dipole

Moments, and Partial Charges. Journal of Chemical

Theory and Computation 2019, 15 (6), 3678-3693.

24. Anthony, T.; Tian, Z.; Barber, D. In Thinking fast

and slow with deep learning and tree search, Advances in

Neural Information Processing Systems, 2017; pp 5360-

5370.

25. Kingma, D. P.; Ba, J., Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980

2014.

26. Bach, F.; Moulines, E., Non-strongly-convex

smooth stochastic approximation with convergence rate

O(1/n). In Neural Information Processing Systems, 2013;

pp 773-781.

27. Berezhkovskii, A.; Szabo, A., One-dimensional

reaction coordinates for diffusive activated rate processes

in many dimensions. The Journal of chemical physics

2005, 122 (1), 014503.

13

28. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S., Fast

and Accurate Deep Network Learning by Exponential

Linear Units (ELUs). In International Conference on

Learning Representations, 2016.

29. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y.,

Spectral normalization for generative adversarial

networks. arXiv preprint arXiv:1802.05957 2018.

30. Case, D.; Cerutti, D.; Cheatham III, T.; Darden, T.;

Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Greene, D.;

Homeyer, N., AMBER 2017, 2017. San Francisco:

University of California.

31. Stewart, J. J., Optimization of parameters for

semiempirical methods V: modification of NDDO

approximations and application to 70 elements. Journal of

Molecular modeling 2007, 13 (12), 1173-1213.

32. Tribello, G. A.; Bonomi, M.; Branduardi, D.;

Camilloni, C.; Bussi, G., PLUMED 2: New feathers for an

old bird. Computer Physics Communications 2014, 185

(2), 604-613.

33. Ceriotti, M.; Tribello, G. A.; Parrinello, M.,

Simplifying the representation of complex free-energy

landscapes using sketch-map. Proceedings of the National

Academy of Sciences 2011, 108 (32), 13023-13028.

34. Berendsen, H.; Grigera, J.; Straatsma, T., The

missing term in effective pair potentials. Journal of

Physical Chemistry 1987, 91 (24), 6269-6271.

35. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.;

Roitberg, A.; Simmerling, C., Comparison of multiple

Amber force fields and development of improved protein

backbone parameters. Proteins: Structure, Function, and

Bioinformatics 2006, 65 (3), 712-725.

36. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C.,

Numerical integration of the cartesian equations of motion

of a system with constraints: molecular dynamics of n-

alkanes. Journal of Computational Physics 1977, 23 (3),

327-341.

37. Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren,

W. F. v.; DiNola, A.; Haak, J. R., Molecular dynamics

with coupling to an external bath. The Journal of

Chemical Physics 1984, 81 (8), 3684-3690.

38. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.;

Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G., Self-

consistent-charge density-functional tight-binding method

for simulations of complex materials properties. Phys.

Rev. B 1998, 58, 7260-7268.

39. Sieffert, N.; Wipff, G., The [BMI][Tf2N] Ionic

Liquid/Water Binary System:  A Molecular Dynamics

Study of Phase Separation and of the Liquid−Liquid

Interface. The Journal of Physical Chemistry B 2006, 110

(26), 13076-13085.

40. Fu, J.; Yang, Y. I.; Zhang, J.; Chen, Q.; Shen, X.;

Gao, Y. Q., Structural Characteristics of Homogeneous

Hydrophobic Ionic Liquid–HNO3–H2O Ternary System:

Experimental Studies and Molecular Dynamics

Simulations. The Journal of Physical Chemistry B 2016,

120 (23), 5194-5202.

