Pressure-induced Na-Au compounds with novel structural

units and unique charge transfer

Xin Du^{1,2}, Huan Lou^{1,2}, Jing Wang^{1,*} and Guochun Yang^{1,2,*}

1. State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

2. Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China E-mail: yanggc468@nenu.edu.cn

Ind	lex						Page
1. (Computationa	l details		• • • • • • •	•••••	•••••	2
2.	Calculated	Birch-Murnaghan	equation	of	states	for	Cmcm-structured
Nag	3Au·····						••••••4
3. (Calculated for	mation enthalpies pe	er f.u. of stal	ble N	a-Au co	mpou	nds·····5
4. I	Phonon disper	rsion curves for stabl	e Na-Au co	троι	ınds	•••••	6
5. I	Electronic ban	nd structures calculat	ed by the Pl	BE h	ybrid fur	nction	al7
6. I	PDOS calcula	ted by the PBE hybr	id functiona	ıl for	stable N	a-Au	compounds8
7.]	The PDOS of	Au in <i>Cmmm</i> Na ₀ Au	and solid A	Au at	50 GPa		9
8. 5	Superconducti	ive properties of Na ₂	Au·····	•••••			9
9. (Calculated EL	F of stable Na-Au co	ompounds…			•••••	10
10.	Structural inf	formation of predicte	d stable Na	-Au c	compour	ıds⋯	11
11.	References ··						

Computational Details

Our structural prediction approach is based on a global minimization of free energy surfaces merging ab initio total-energy calculations with CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) methodology as implemented in the CALYPSO code [1,2]. The structures of stoichiometry Na_xAu_y (x =1-6 and y = 1; x =1 and y = 2; x = 3 and y = 2) were searched with simulation cell sizes of 1-4 formula units (f.u.) at 0, 50, and 100 GPa. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code [3] were done with the conjugate gradients method and stopped when total energy changes became smaller than 1×10^{-5} eV per cell. After processing the first generation structures, 60% of them with lower enthalpies are selected to construct the next generation structures by PSO (Particle Swarm Optimization). 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. The structural searching simulations for each stoichiometry were stopped after generating 2000 ~ 2400 structures (e.g., about 20 ~ 30 generations).

To further analyze the structures with higher accuracy, we select a number of structures with lower enthalpies and perform structural optimization using density functional theory within the generalized gradient approximation [4] as implemented in the VASP code. The cut-off energy for the expansion of wavefunctions into plane waves is set to 1000 eV in all calculations, and the Monkhorst–Pack *k*-mesh with a maximum spacing of $2\pi \times 0.02$ Å⁻¹ was individually adjusted in reciprocal space with respect to the size of each computational cell. This usually gives total energy well converged within ~1 meV/atom. The electron-ion interaction was described by means of projector augmented wave with $2s^22p^63s^1$ and $5d^{10}6s^1$ electrons as valence for Na and Au atoms, respectively.

The phonon spectra and electron-phonon coupling calculations are carried out with the density functional perturbation (linear response) theory as implemented in the QUANTUM ESPRESSO package [5]. We employ the ultrasoft pseudopotentials with $2s^22p^63s^1$ and $5d^{10}6s^1$ as valence electrons for Na and Au atoms, respectively. The kinetic energy cutoff for wave-function expansion is chosen as 70 Ry. To reliably calculate electron-phonon coupling in metallic systems, we need to sample dense k-meshes for electronic Brillouin zone integration and enough q-meshes for evaluating average contributions from the phonon modes. We have calculated the superconducting T_c of metallic Na_xAu_y (x = 1-6 and y = 1; x = 1 and y = 2; x = 3 and y =2) as estimated from the McMillan-Allen-Dynes formula [6-8]:

$$T_{C} = \frac{\omega_{\log}}{1.2k_{B}} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right]$$

Here, $k_{\rm B}$ is the Boltzmann constant and μ^* is the Coulomb pseudopotential ($\mu^* = 0.1$). The electron-phonon coupling constant, λ , and the logarithmic average phonon frequency, $\omega_{\rm log}$, are calculated by the Eliashberg spectral function for electron-phonon interaction:

$$\alpha^{2}F(\omega) = \frac{1}{N(E_{F})} \sum_{kq,\nu} \left| g_{k,k+q,\nu} \right|^{2} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+q}) \delta(\omega - \omega_{q,\nu})$$

where $\lambda = 2 \int d\omega \frac{\alpha^2 F(\omega)}{\omega}$; $\omega_{\log} = \exp \left[\frac{2}{\lambda} \int \frac{d\omega}{\omega} \alpha^2 F(\omega) \ln(\omega) \right]$. Herein, $N(E_F)$ is the electronic density of states at the Fermi level, $\omega_{q, v}$ is the phonon frequency of mode v and wave vector q, and $|g_{k,k+q,v}|$ is the electron-phonon matrix element between two electronic states with momenta k and k + q at the Fermi level [9,10].

Supplementary Figures

Figure S0. Comparison of the fitted Birch-Murnaghan equation of states for Na_3Au with *Cmcm* symmetry by using the calculated results from the PAW pseudopotentials and the full-potential LAPW methods.

Figure S1. (a) Calculated formation enthalpy per formula unit of P4/mmm NaAu relative to Fd-3m NaAu₂ plus C2/c Na₃Au₂ as a function of pressure. (b) Calculated formation enthalpy per formula unit of Cmmm Na₃Au₂ relative to Cmmm NaAu plus Fd-3m Na₂Au as a function of pressure. (c) Calculated formation enthalpy per formula unit of R-3m Na₄Au relative to $P6_3cm$ Na₃Au plus Na as a function of pressure. (d) Calculated formation enthalpy per formula unit of C2/c Na₅Au relative to R-3m Na₄Au plus Na and (e) C2/m Na₄Au plus C2/c Na₆Au as a function of pressure. (f) Calculated formation enthalpy per formula unit of C2/c Na₆Au relative to C2/c Na₅Au plus Na as a function of pressure.

Figure S2. Phonon dispersion curves for (a) *Cmmm* NaAu₂ at 50 GPa. (b) *P4/mmm* NaAu at 50 GPa. (c) *Cmmm* NaAu at 100 GPa. (d) *Cmmm* Na₃Au₂ at 50 GPa. (e) *P6/mmm* Na₂Au at 50 GPa. (f) *Fd-3m* Na₂Au at 100 GPa. (g) *Cmcm* Na₃Au at 100 GPa. (h) *R-3m* Na₄Au at 50 GPa. (i) *C2/m* Na₄Au at 100 GPa. (j) *C2/c* Na₅Au at 50 GPa. (k) *C2/c* Na₆Au at 100 GPa.

Figure S3. Electronic band structures calculated by the PBE hybrid functional for (a) *Cmmm* NaAu₂ at 50 GPa, (b) *P4/mmm* NaAu at 50 GPa, (c) *Cmmm* NaAu at 100 GPa, (d) *Cmmm* Na₃Au₂ at 50 GPa, (e) *P6/mmm* Na₂Au at 50 GPa, (f) *Fd-3m* Na₂Au at 100 GPa, (g) *Cmcm* Na₃Au at 100 GPa, (h) *R-3m* Na₄Au at 50 GPa, (i) *C2/m* Na₄Au at 100 GPa, (j) *C2/c* Na₅Au at 50 GPa, and (k) *C2/c* Na₆Au at 100 GPa.

Figure S4. PDOS calculated by the PBE hybrid functional for (a) *P4/mmm* NaAu at 50 GPa, (b) *Cmmm* NaAu at 100 GPa, (c) *Cmmm* Na₃Au₂ at 50 GPa, (d) *P6/mmm* Na₂Au at 50 GPa, (e) *Fd-3m* Na₂Au at 100 GPa, (f) *Cmcm* Na₃Au at 100 GPa, (g) *R-3m* Na₄Au at 50 GPa, (h) *C2/m* Na₄Au at 100 GPa, and (i) *C2/c* Na₅Au at 50 GPa.

Figure S5. The PDOS of (a) Au in *Cmmm* Na₀Au and (b) solid Au at 50 GPa.

Figure S6. The Eliashberg spectral function $\alpha^2 F(\omega)$ and integrated electron-phonon coupling parameters $\lambda(\omega)$ of Na₂Au. And the calculated superconducting transition temperature (T_c) of Na₂Au is 0 K.

Figure S7. ELF of stable Na-Au compounds. (a) *Cmmm* NaAu₂ at 50 GPa, (b) *P4/mmm* NaAu at 50 GPa. (c) *Cmmm* NaAu at 100 GPa. (d) *Cmmm* Na₃Au₂ at 50 GPa. (e) *P6/mmm* Na₂Au at 50 GPa. (f) *Fd-3m* Na₂Au at 100 GPa. (g) *Cmcm* Na₃Au at 100 GPa. (h) *R-3m* Na₄Au at 50 GPa. (i) *C2/m* Na₄Au at 100 GPa. (j) *C2/c* Na₅Au at 50 GPa. (k) *C2/c* Na₆Au at 100 GPa. For all Na-Au compounds, no electrons sit at the interstitial regions.

Supplementary Table

Phase	Press	Lattice	Wyckoff Positions				
	ure	Paramete	(fractional)				
	(GPa)	rs					
		(Å, °)	Atoms	x	у	z	
Cmmm NaAu ₂	50	<i>a</i> = 3.713	Na(4i)	0.5000	0.8312	-0.0000	
		<i>b</i> = 11.526	Au(2c)	0.5000	0.0000	0.5000	
		<i>c</i> = 3.9035	Au(2a)	0.0000	0.0000	0.0000	
		$\alpha = \beta = \gamma$ $= 90.0000$	Au(4j)	-0.0000	0.1687	0.5000	
P4/mmm NaAu	50	a = b = 2.671	Na(1d)	0.5000	0.5000	0.5000	
		<i>c</i> = 3.797	Au(1a)	0.0000	0.0000	0.0000	
		$\alpha = \beta = \gamma$ $= 90.0000$					
<i>Cmmm</i> NaAu	100	a = 6.6789 b = 5.3166	Na(4j)	0.0000	0.79768	0.5000	
		<i>c</i> = 2.599	Au(4g)	0.7149	-0.0000	-0.0000	
		$\alpha = \beta = \gamma$ $= 90.0000$					
<i>Cmmm</i> Na ₃ Au ₂	50	<i>a</i> = 3.9951	Na(2c)	0.5000	-0.0000	0.5000	
		<i>b</i> = 12.7262	Na(4j)	0.5000	0.7984	0.5000	
		<i>c</i> = 2.6214	Au(4i)	0.0000	0.8934	-0.0000	
		$\alpha = \beta = \gamma$ $= 90.0000$					
P6/mmm Na ₂ Au	50	a = b =	Na(2c)	0.6667	0.3333	-0.0000	
		4.1378 c = 2.633	Au(1b)	-0.0000	0.0000	0.5000	
		$\alpha = \beta =$					
		90.0000					
		$\gamma =$					
		120.0000					
<i>Fd-3m</i> Na ₂ Au	100	a = b = c = 6 3585	Na(16c)	0.6250	0.3750	0.8750	
		$\alpha = \beta = \gamma$ $= 90.0000$	Au(8b)	0.7500	0.2500	0.2500	

Table S1. Structural information of predicted stable Na-Au compounds.

Cmcm Na ₃ Au	100	<i>a</i> = 3.9229	Na(4c)	0.0000	0.2075	1.2500
		<i>b</i> = 8.4118	Na(8f)	0.5000	0.1197	1.0513
		<i>c</i> = 5.1283	Au(4c)	0.5000	0.4177	1.2500
		$\alpha = \beta = \gamma$ $- 90,0000$				
<i>R-3m</i> Na ₄ Au	50	a = b = 4.2491	Na(6c)	-0.0000	-0.0000	0.7129
		<i>c</i> = 12.6022	Na(6c)	-0.0000	-0.0000	0.90635
		$\alpha = \beta =$ 90.0000	Au(3b)	-0.0000	0.0000	0.5000
		$\gamma =$ 120.0000				
C2/m Na ₄ Au	100	<i>a</i> = 12.9363	Na(4i)	0.0790	-0.0000	0.2245
		<i>b</i> = 3.9027	Na(4i)	0.9452	-0.0000	0.2801
		<i>c</i> = 7.4706	Na(4i)	0.6639	-0.0000	0.7770
		$\alpha = \gamma =$ 90.0000	Na(4i)	0.1407	0.5000	0.4513
		$\beta =$ 146.0666	Au(4i)	0.8268	0.5000	0.8578
C2/c Na ₅ Au	50	<i>a</i> = 5.2357	Na(8f)	0.3063	0.6348	1.4061
		<i>b</i> = 8.2804	Na(8f)	0.7811	0.6152	1.4278
		<i>c</i> = 7.3007	Na(4e)	0.5000	0.8907	1.2500
		$\alpha = \gamma =$ 90.0000	Au(4e)	-0.0000	0.8639	1.2500
		$\beta =$				
C2/c Na ₆ Au	100	a = 65402	Na(8f)	0.6064	0.0637	-0.3728
		b = 6.5242	Na(8f)	0.1927	0.9132	-0.4056
		c = 6.9143	Na(8f)	0.8591	0.1740	0.0996
		$\alpha = \gamma =$ 90.0000	Au(4e)	-0.0000	0.7959	0.2500
		р = 97.3864				

References

- [1] Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
- [2] Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).
- [3] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- [4] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
- [5] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
- [6] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).
- [7] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A.
- Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B 72, 024545 (2005).
- [8] M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E. K. U. Gross, and S. Massidda, Phys. Rev. B **72**, 024546 (2005).
- [9] P. B. Allen and B. Mitrović, in Solid State Phys., edited by H. Ehrenreich, F. Seitz,
- and D. Turnbull (Academic Press, 1983), pp. 1.
- [10] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
- [11] T. Sasaki, H. Takizawa, K. Uheda, and T. Endo, physica status solidi (b) **223**, 29 (2001).
- [12] B. Krebs and H.-U. Hürter, Angew. Chem. 92, 479 (1980).
- [13]H. Diercks and B. Krebs, Angewandte Chemie International Edition in English 16, 313 (1977).
- [14]K. A. Cherednichenko, I. A. Kruglov, A. R. Oganov, Y. Le Godec, M. Mezouar, and V. L. Solozhenko, J. Appl. Phys. **123**, 135903 (2018).