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1 Total Number of Possible Lewis Structures

In an Ncc-Nee closed-shell system, for all Lewis structures with a fixed number of lone pairs,
λ, the number of different ways of assigning the Ne/2 electron pairs can be counted as follows.
First, we pick up λ out of the Nc atoms to accommodate λ lone pairs, which has the number
of possibilities being

Nλ
1 = Cλ

Nc
=

Nc!

λ! (Nc − λ)!
(S1)

Second, we choose 2 atoms out of the remaining (Nc − λ) ones to form a covalent bond,
giving rise to C2

Nc−λ choices. Subsequently, we choose another 2 out of (Nc − λ − 2) atoms
for the next covalent bond, resulting in C2

Nc−λ−2 choices, . . . , and so on. By continuing the
above procedure until all electron pairs have been run out, we end up with the number of
all possible combinations for the whole second step as

Nλ
2 = C2

Nc−λ · C
2
Nc−λ−2 · · ·C2

Nc−λ−2(Ne/2−λ)/(Ne/2− λ)!

=
(Nc − λ)!

2Ne/2−λ (Nc + λ−Ne)! (Ne/2− λ)!
(S2)

Note that the presence of the term (Ne/2 − λ)! in the denominator is because we do not
distinguish the order of successive steps of choosing 2 atoms. Thus, the total number of
Lewis structures with λ lone pairs is

Nλ
Lewis = Nλ

1N
λ
2 =

Nc!

λ! (Nc + λ−Ne)! (Ne/2− λ)! 2Ne/2−λ
(S3)

Hence, the total number of all possible Lewis structures is given by

NLewis =

Ne/2∑
λ=0

Nλ
Lewis =

Ne/2∑
λ=0

Nc!

λ! (Nc + λ−Ne)! (Ne/2− λ)! 2Ne/2−λ
(S4)

S3



2 The VB Description of Lewis Structure Wave Func-

tions Is Equivalent to the LSD Description

For a lone pair on atom A, the VB description and that in this work are obviously identical,
i.e., the wave function is expressed as a single determinant in terms of a 1c-LUO, φA:

ΦA = ΦVB
A = |φAφA| = |ϕAϕA| (S5)

where ϕA is the effective atomic orbital of A. The two definitions differ in the wave function
of a pure covalent bond between atoms A and B. In the VB theory, a Heitler–London
function is utilized, and its normalized form is written as

ΦHL
AB =

1√
2

(
|ϕAϕB| − |ϕAϕB|

)
(S6)

Note that it is presumed here that an orthonormal atomic basis set is used and therefore
〈ϕA|ϕB〉 = 0. The LSD description of a pure covalent bond uses a single determinant in
terms of a 2c-LUO, φAB:

ΦAB = |φABφAB| =

∣∣∣∣∣ 1√
2

(ϕA + ϕB)
1√
2

(ϕA + ϕB)

∣∣∣∣∣ (S7)

Using Moffitt’s theorem,1–3 we can expand eq S7 as

ΦAB =
1

2

(
|ϕAϕB| − |ϕAϕB|+ |ϕAϕA|+ |ϕBϕB|

)
(S8)

Comparing eq S8 with eqs S6 and S5, we know that

ΦAB =
1√
2

ΦHL
AB +

1

2
(ΦA + ΦB) (S9)

This equation gives the linear relationship between the LUO ΦAB and the Heitler–London
function ΦHL

AB. Therefore, any VB wave function of a molecular system can be equivalently
transformed into the wave function in terms of the LUOs, and vice versa.

Taking a diatomic molecule, A—B, as an example, we can describe the σ bond using a
wave function in terms of 1c- and 2c-LUOs, as

ΨAB = λΦAB + µ(ΦA + ΦB) (S10)

where λ and µ are the coefficients for the covalent and ionic Lewis structures, respectively,
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for describing the actual A—B bond. Alternatively, the wave function of this bond can also
be expressed by a VB wave function:4

ΨAB = λ̃ΦHL
AB + µ̃(ΦA + ΦB) (S11)

Plugging eq S9 into eq S10 and then comparing with eq S11, we obtain

λ̃ =
λ√
2

; µ̃ = µ+
λ

2
(S12)

and

λ =
√

2λ̃; µ = µ̃− λ

2
(S13)

For a homonuclear bond like in the H2 molecule, λ = 1, µ = 0, then λ̃ = 1√
2
, µ̃ = 1

2
:

ΨAB(H2) = ΦAB =
1√
2

ΦHL
AB +

1

2
(ΦA + ΦB) (S14)
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3 Overlap and Hamiltonian Matrices between LSDs

3.1 Overlap matrix

For an open-shell system with m α electrons and n β electrons (m > n), the LSD of the i-th
Lewis structure is expressed as

Ψi = |φi1φi2 · · ·φimφi1φi2 · · ·φin| (S15)

where {φik} and {φil} are, respectively, the α and β LUOs (k = 1, 2, · · · ,m and l =

1, 2, · · · , n). Note that, in a spin-unrestricted scheme, the α-LUO φik and β-LUO φjk corre-
sponding to the same lone pair or covalent bond are not necessarily the same spatial orbitals.
According to Löwdin’s result,5,6 the overlap between two LSDs is given by the following de-
terminant:

Sij = 〈Ψi|Ψj〉 =

∣∣∣∣∣Sααij Sαβij
Sβαij Sββij

∣∣∣∣∣ (S16)

where the sub-determinants
∣∣Sααij ∣∣, ∣∣Sαβij ∣∣, ∣∣Sβαij ∣∣ and ∣∣Sββij ∣∣ are∣∣Sααij ∣∣ =

∣∣〈φik|φjl〉∣∣; ∣∣Sαβij ∣∣ =
∣∣〈φik|φjl〉∣∣;∣∣Sβαij ∣∣ =

∣∣〈φik|φjl〉∣∣; ∣∣Sββij ∣∣ =
∣∣〈φik|φjl〉∣∣. (S17)

Since the α and β spin wave functions are orthogonal to each other,
∣∣Sαβij ∣∣ =

∣∣Sβαij ∣∣ = 0.
Hence, the determinant in eq S16 is block diagonal and therefore

Sij =
∣∣Sααij ∣∣ · ∣∣Sααij ∣∣ =

∣∣〈φik|φjl〉∣∣ · ∣∣〈φik|φjl〉∣∣ ≡ Sαij · S
β
ij (S18)

For a closed-shell system as a special case, the overlap matrix of LSDs is

Sij =
(
Sαij
)2

=
∣∣〈φik|φjl〉∣∣2 (k, l = 1, 2, . . . ,m) (S19)

3.2 Hamiltonian matrix

For an open-shell system, using Löwdin’s result,5,6 the Hamiltonian matrix of LSDs is

Hij = 〈Ψi|ĥ|Ψj〉 =
m∑
r=1

∣∣∣∣∣Hr,αα
ij Hr,αβ

ij

Sβαij Sββij

∣∣∣∣∣+
n∑
r=1

∣∣∣∣∣ Sααij Sαβij
Hr,βα
ij Hr,ββ

ij

∣∣∣∣∣ (S20)
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where the sub-determinant
∣∣Hr,αα

ij

∣∣, ∣∣Hr,αβ
ij

∣∣, ∣∣Hr,βα
ij

∣∣ and ∣∣Hr,ββ
ij

∣∣ are
∣∣Hr,αα

ij

∣∣ =
∣∣〈φik|ĥr|φjl〉∣∣; ∣∣Hr,αβ

ij

∣∣ =
∣∣〈φik|ĥr|φjl〉∣∣; (S21)∣∣Hr,βα

ij

∣∣ =
∣∣〈φik|ĥr|φjl〉∣∣; ∣∣Hr,ββ

ij

∣∣ =
∣∣〈φik|ĥr|φjl〉∣∣, (S22)

in which ĥr equals the one-electron Kohn–Sham (Fock) operator, ĥ, if k = r and otherwise
the identity operator, 1̂. Noticing that

∣∣Hr,αβ
ij

∣∣ =
∣∣Hr,βα

ij

∣∣ = 0 because of the orthogonality
between different spins, we have

Hij =
m∑
r=1

∣∣Hr,αα
ij

∣∣ · ∣∣Sββij ∣∣+
n∑
r=1

∣∣Sααij ∣∣ · ∣∣Hr,ββ
ij

∣∣ (S23)

=
∣∣〈φik|φjl〉∣∣ m∑

r=1

∣∣〈φik|ĥr|φjl〉∣∣ +
∣∣〈φik|φjl〉∣∣ n∑

r=1

∣∣〈φik|ĥr|φjl〉∣∣
≡ Sβij

α−LUOs∑
r

Hr,α
ij + Sαij

β−LUOs∑
r

Hr,β
ij (S24)

where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.
Evidently, for a closed-shell system, Sαij = Sβij =

√
Sij (cf. eq S19) andHr,α

ij = Hr,β
ij ≡ Hr

ij,
so the Hamiltonian matrix of LSDs is

Hij = 2
√
Sij

m∑
r=1

Hr
ij (S25)

3.3 Energies of Lewis structures

Let us define the energy of the i-th Lewis structure as the expectation value of the Hamilto-
nian operator on the wave function of that Lewis structure. Accordingly, it is given by the
corresponding diagonal entry of the Hamiltonian matrix of LSDs, i.e.

Ei ≡ 〈Ψi|Ĥ|Ψi〉 = Hii (S26)

Using eq S24 and noticing that Sαii = Sβii = 1, we have

Ei = Hii =
α−LUOs∑

r

Hr,α
ii +

β−LUOs∑
r

Hr,β
ii =

m∑
r=1

∣∣〈φik|ĥr|φil〉∣∣ +
n∑
r=1

∣∣〈φik|ĥr|φil〉∣∣ (S27)

It is noticed that the two different LUOs φik and φil (for k 6= l) present in the same Lewis
structure are composed of distinct RAOs, because each RAO is exclusively assigned to one
lone pair or one bond. As the RAOs are mutually orthogonal, φik and φil are orthogonal
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to each other as well. This means that all off-diagonal entries of determinant Hr,α
ii are zero

except in the r-th row (see eq S24). Thus,

Hr,α
ii = 〈φir|ĥ|φir〉 ≡ εαir (S28)

As we can see, the meaning of Hr,α
ii is the energy of the α-LUO φir, denoted by εαir. Likewise,

Hr,β
ii = 〈φir|ĥ|φir〉 = εβir, which is the energy of the β-LUO φir. Therefore, from eq S27, we

obtain the energy of the i-th Lewis structure as

Ei = Hii =
m∑
r=1

εαir +
n∑
r=1

εβir =
All LUOs∑

r

εir (S29)

where εir denotes the energy of any individual LUO irrespective of the spin.
For a closed-shell system, each LUO is doubly occupied, and hence the energy of a Lewis

structure is

Ei = Hii = 2
m∑
r=1

εir (S30)

3.4 Interaction energies between Lewis structures

By using the expansion of Ψ (eq 1 in the main text), the reference energy of the resonance
hybrid is

E ≡ 〈Ψ|Ĥ|Ψ〉 =
∑
i

c2
iHii +

∑
i

∑
j 6=i

c∗i cjHij =
∑
i

c2
iEi +

∑
i

∑
j 6=i

c∗i cjHij (S31)

Meanwhile, from the Chirgwin–Coulson weight wi,7 we have

c2
i = wi −

∑
j 6=i

c∗i cjSij (S32)

Plugging eq S32 into S31, we obtain

E =
∑
i

wiEi +
∑
i

∑
j 6=i

c∗i cj
(
Hij − EiSij

)
(S33)
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3.5 Overlap and Hamiltonian integrals between two Lewis struc-

tures depend only on the distinct bonds/lone pairs

Let us consider in a closed-shell system two Lewis structures sharing some common bonds
and/or lone pairs. Suppose two LSDs, Ψi and Ψj, have h LUOs in common, i.e.,

Ψi = |φ1φ1φ2φ2 · · ·φhφh φi1φi1φi2φi2 · · ·φigφig|

Ψj = |φ1φ1φ2φ2 · · ·φhφh φj1φj1φj2φj2 · · ·φjgφjg| (S34)

It is follows that all LUOs within an LSD are orthogonal to each other since none of them
share the same RAOs and the RAOs form an orthogonal set. As a result, any two LUOs
appeared in Ψi and Ψj, regardless of the spin, are orthogonal to each other, except for those
from the distinct set of LUOs, i.e., φik and φjk (k = 1, 2, . . . , g). Consequently, using eq S16
and the property of a block triangular determinant, we obtain

Sij = Scomm
ij · Sdiff

ij (S35)

where Scomm
ij is the determinant of overlap integrals between the common set of LUOs, i.e.,

{φk, φk} (k = 1, 2, . . . , h); Sdiff
ij is the determinant of overlap integrals between the distinct

set of LUOs, i.e., between {φik, φik} and {φjl, φjl} (k, l = 1, 2, . . . , g). Obviously, Scomm
ij = 1

as the common set of LUOs are mutually orthogonal to each other. Hence, the overlap
between Ψi and Ψj is reduced to

Sij = Sdiff
ij =

∣∣〈φik|φjl〉∣∣2 (k, l = 1, 2, . . . , g; g 6 m) (S36)

The equation concludes that the computation of the overlap between two LSDs can be re-
duced to calculating the overlap between the distinct parts of the two LSDs. As a corollary, if
the distinct parts of two Lewis structures have no atoms in common, then they are orthogonal
to each other.

Now, let us look at the Hamiltonian integral between two LSDs, Ψi and Ψj, in a closed-
shell system. Following the similar procedure used for the overlap integral of two Lewis
structures, we can likewise arrive at

Hij = 2
√
Sij

( h∑
r=1

〈φr|ĥ|φr〉
∣∣〈φik|φjl〉∣∣+

g∑
r=1

∣∣〈φik|ĥr|φjl〉∣∣) (k, l = 1, 2, . . . , g) (S37)

As we can see, 〈φr|ĥ|φr〉 = εr is the energy of LUO φr;
∣∣〈φik|φjl〉∣∣ =

√
Sdiff
ij is computed
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among the distinct LUOs only;
∣∣〈φik|ĥr|φjl〉∣∣ = Hdiff,r

ij also corresponds the distinct LUOs
only. Recalling that Sij = Sdiff

ij (eq S36), we can rewrite eq S37 as

Hij = 2Sdiff
ij

h∑
r=1

εr + 2
√
Sdiff
ij

g∑
r=1

Hdiff,r
ij (S38)

As εr is the energy of LUO φr, 2
h∑
r=1

εr = Ecomm
ij is the total energy of all the common LUOs

shared by Ψi and Ψj. Meanwhile, according to eq S25, the last term in eq S38 equals Hdiff
ij ,

the Hamiltonian integral calculated from the determinant associated with the distinct set of
LUOs between Ψi and Ψj. As a result, eq S38 is simplified as

Hij = Sdiff
ij Ecomm

ij +Hdiff
ij (S39)

This equation suggests that the Hamiltonian integral between two Lewis structures is divided
into two contributions: the total energy of the common part multiplied by the overlap of the
distinct parts, and the Hamiltonian integral between the distinct parts. As a consequence,
if two Lewis structures are orthogonal to each other, their Hamiltonian integral vanishes.
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4 Löwdin weights for purely ionic HX molecules

As shown in the main text, the 2c-2e resonance system in the HX molecule is described by
three Lewis structures: H—X↔ H+ :X− ↔ H−: X+ (numbered as 1, 2, and 3, respectively).
In the current WFRT framework, it is readily to obtain the overlap matrix of the LSDs as

S =

1 1
2

1
2

1
2

1 0
1
2

0 1

 (S40)

For a (hypothetic) purely ionic HX system, e.g., H+ :X−, the wave function expansion
coefficients are (by substituting q = 1 in eqn (15) in the main text):

c =

c1

c2

c3

 =

0

1

0

 (S41)

which clearly indicates that the wave function of the purely ionic HX system is fully repre-
sented by the Lewis structure H+ :X−.

The Löwdin weights8,9 are then obtained by means of symmetric orthogonalization of
the LSDs. The new coefficients after symmetric orthogonalization are given as

C̃ = S−
1
2C =

 0.2706

0.9619

−0.0381

 (S42)

As a result, the Löwdin weights for the three Lewis structures are the square of the coeffi-
cients: w1 = 0.0732, w2 = 0.9253, w3 = 0.0014.
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5 Distribution of weights of Lewis structures for naph-

thalene

Fig. S1 presents the weight of each individual Lewis structure (lower panel, blue line) and the
accumulated weight (upper panel, red line) with the increasing number of Lewis structures,
for naphthalene calculated at the B3LYP/Def2-TZVPP level. The Lewis structures along
the x-axis are arranged by the number of lone pairs (λ) and in descending order of individual
weight.
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Figure S1. PWSO weight of each individual Lewis structure of naphthalene and the cor-
responding accumulated weight with the increasing number of Lewis structures. The Lewis
structures are ordered along the x-axis by the number of lone pairs (λ), and within each same
λ arranged in descending order of individual weight. The number in parentheses indicates
the number of Lewis structures with the same number of lone pairs, λ.

Comparing the individual weights, we see that the Kekulé structures (the leftmost three
points in Fig. S1) have a significantly higher weight than all other Lewis structures. Thus,
the Kekulé structures can be regarded as the most dominant contributors. On the other
hand, the accumulated weight presented in the upper panel of Fig. S1 (red curve) helps us
understand why the few leading Lewis structures (the ones shown in Fig. 7 in the main text)
only contribute a small percentage to the total weight. As we can see, there exist a great
number of Lewis structures, each having a non-negligible (though small) weight, and they
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make a considerable contribution to the total weight. This accumulative effect is particularly
obvious for the monoionic Lewis structures (λ = 1), as shown by the substantial increase
of the accumulated weight (red curve) in the λ = 1 region. Note that the scale of x-axis is
logarithmic, implying that the increase is over a large number of structures.
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