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Modification of nanoclays surface

Functionalisation of HNT with carboxyl groups (-COOH)

Nanoclays functionalised with carboxyl groups (HNT-COOH)
were prepared in two different steps. In the first step, the
surface of the HNT was functionalised with NH, groups by

mixing HNT with an excess of (3-aminopropyl)triethoxysilane

(APTES) at pH 9 following the procedure proposed by Yuan et
al.1. The reaction mixture was orbitally stirred for more than
24 hours and the product was washed by centrifugation with
ethanol to remove the unreacted APTES. The obtained
product was dried at 60 °C for 24 hours. Starting from the dry
amino-derivate, HNT-COOH was prepared following the

method proposed by Joo et al.2. Briefly, an ethanol dispersion



of dry HNT-NH; was slowly added to an ethanol solution of
succinic anhydride 0.1 M and the resulting dispersion was
orbitally shaken for 24 hours. The product was washed by
centrifugation with ethanol to remove the unreacted succinic
anhydride and finally dried at 60 °C for 24 hours. The effective
functionalisation of HNT with -COOH groups was assessed by
means of a potentiometric titration. Two different
dispersions of HNT and HNT-COOH halloysites (around 500
mg of solids in 15 mL of H,0) were prepared and the pH was
adjusted until the final value of 10.9 with NaOH 0.1 M.
Subsequently, different amounts of HCI 0.01 M were used to
titrate the solutions. The obtained curves for HNT and HNT-
COOH are reported in Figure S1 together with their 1st

derivative.
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Fig. S1 Titration curves for HNT (panel A) and HNT-COOH (panel B) and
first derivative of both curves (panel C).

The presence of two minima around pH 7-8 and pH 5 in the
derivative of the HNT-COOH titration curve confirms the
presence of two equivalent points that correspond to the
neutralization of NaOH and the protonation of the
carboxylate groups on the surface of the nanoclays,
respectively. The derivative of HNT shows just one minimum
that corresponds to the neutralization of NaOH.

A further confirmation of the presence of COOH groups on
the surface of the halloysites comes from IR spectra (Figure
S2) where the contribution ascribable to the carboxylate
functionalisation at around 1650 cmis clearly visible in the

spectrum of the HNT-COOH sample.
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Fig. S2 FTIR spectra of the samples HNT (black line), HNT-NH2 (green line)
and HNT-COOH (red line).



Functionalisation of HNT with polycarboxylic groups (-PAA)
The functionalisation of HNT with polycarboxylic groups
(HNT-PAA) was performed in two different steps. In the first
step, the surface of HNT was functionalised with
3(trimethoxylsilyl)propylmethacrylate (MPS). Briefly, 60 mL
of MPS were added to a dispersion containing 900 mL of
ethanol and 3 g of HNT. After 72 hours under magnetic
stirring, the product was centrifuged and washed three times
with ethanol and MilliQ water to remove the unreacted MPS.
Then, 1.5 g of the obtained product were polymerized with
3.5 g of acrylic acid (AA) in 300 mL of MilliQ water using 300
mg of (NH4),S,0s as radical initiator. The reaction was carried
out at 80 °C for 60 minutes under nitrogen flow and magnetic
stirring. Afterwards, the reaction temperature was changed
to 70 °C and the reaction was completed in 6 hours. The final
product was washed and centrifuged several times with
MilliQ water to remove unreacted reagents and dried at 80°C
until constant weight.

FTIR investigation (see Figure S3) of the different products
and starting materials confirm  the  successful
functionalisation of the HNT with -PAA moieties. In particular,
the signal at 1720 cm? ascribable to the C=0 of the acrylic

acid in the spectrum of MPS is also visible in the spectrum of

the sample HNT-PAA.
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Fig. S3 FTIR spectra of HNT (black line), HNT-MPS (red line), MPS (blue
line) and HNT-PAA (green line).
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Fig. S4 Derivative weight % obtained from the thermograms acquired on the
samples HNT (black line), HNT-COOH (blue line), and HNT-PAA (red line).

SEM micrographs

Fig. S5 SEM micrographs of M-S-H at two different magnifications, 100 kX
(left) and 200 kX (right).



Fig. S6 SEM micrographs of C-S-H at two different magnifications, 100 kX
(left) and 200 kX (right).

Fig. S7 SEM micrographs of: HNT (panel A), HNT-COOH (panel B), and
HNT-PAA (panel C) at the same magnification (200 kX).

Table S1 EDX analysis

Al/Mg or Ca
M-S-H @HNT-COOH 0.15+0.01
M-S-H @HNT-PAA 0.14 £0.04
C-S-H @HNT-COOH 0.25+0.02
C-S-H @HNT-PAA 0.05 +0.02

The Analytical SAXS Model for M-S-H
The intensity of a SAXS measurement of M-S-H can be

expressed as Eq. S1:

1(@) = N(P(Q)S(Q). + bkg (S1)

where N is a scale factor related to number density, and
electronic contrast; S(Q), is the corrected inter-globule
structure factor of the porous gel taking into account of the
effect of polydispersity; (W} denotes the normalized
intra-particle structure factor averaged over the distribution
of the size and for anisotropic shapes over all possible
orientations of the base unit. Inter-globule structure factor

S(Q), is calculated by Eq. S2:

S(@c=1+p@[S@) —1] (S2)
where
o) - e 5

F(Q) is the particle form factor and

-1
SQ) = 1+(<) r(D + 1) -Snl@-vtan (@) (s4)
R O-DI+QN 7 (@)

where T is the Gamma function.

The essential parameters of the S(Q). are the mass fractal
dimension, D, the fractal cutoff dimension, {, and the
equivalent radius, R,.

The normalized intra-particle structure factor can be
expressed as:

(P@) = (IF@I* (S5)
P(Q) contains the structural information of the globules. This
part is where M-S-H

is different from C-S-H. In the case of C-S-H, the form factor
reflects a multi-disk-like structure with water layers.
However, such structure does not exist in M-S-H. Since the
SAXS measurement of M-S-H is smooth in both low-Q and
high-Q, a polydisperse spheres model for M-S-H globules was
used in the modelling of the local geometrical arrangement

of the base unit3. In this model the normalized intra-particle



structure factor averaged over the radius of the polydisperse
spheres as:
(P@) = [,” P(Q.R)f,(R)AR (s6)

where

{3[Sin(QR)—(QR)COS(QR)]}Z

PR = @mr?

(57)

the radius R is assumed to follow a Schulz distribution with
Z+1\ %2+

L = (2™

The fitting parameters of this polydisperse sphere model are

RZexp [— —R] JT(Z + 1) ($8)

the average radius of the spheres, R, and the width
parameter of the Schultz distribution of the sphere radius, Z.

The equivalent radius Re in S(Q) is equivalent to R.

The Analytical SAXS Model for C-S-H

The structure of the C-S-H globule can be modelled as a disk
with layered sub-structure as proposed in our previous
works3—. We can describe the size distribution of the C-S-H
globules as a Schultz distribution of the number of repeating

layers n of the multi-layered disk.

oo

<P(Q Orientation ,n .[ P(Q n) Orientation fb(n) dl’l
0 (S9)
where
(P@m)  =[P(Q.pn) du
Orientation 0 (510)
fs(m)= (Z H) n exp{—(z”fl)n}/l“(znﬂ)
n
Zn>-1 (511)
P(Q,ﬂ,n)—|F(Q,ﬂ,n)2—{2J1 i s } e+ w)
ORV1-4 (512)

A=y cos(Q#(nlz‘ L, )J Sin(zl?Ll)+cos[Qy(n;+Ll )] Sin(Zszj
(513)
B=y m[Qﬂ(ng Lz)Jsm[ZIl;) +Sin(Q/1(n§+L )J [Z)ZL )
(s14)
2 sin(Q/;nLj
ny L +L,] Sin[QﬂLj
2 (S15)
and
iy (s16)

where py, p2, and p, are scattering length densities (SLD) of
water, calcium silicate, and solvent, respectively.

The fitting parameters of the intra-particle structure are the
disk radius (R), the thickness of hydration water (L;), the layer
thickness of calcium silicate (L), the scattering length density
contrast ratio (), the average number of repeating layers
inside a globule (77) and the width parameter (Z,) of the
number of layers described by a Schultz distribution. The
equivalent radius R. can be found as R, = (3R2 L/4)1/3
where L is the interlayer distance (L = L1 + L;). The total
thickness t can be calculated as t = nL. More details on this

model can be accessed in the literature®.

Evaluation of additives scattering contribution in
composites curves

The contribution of the additives to the SAXS profile was
estimated considering the scattering profile of the

composites as a linear combination of the pure phases:



y = x[1]*PHASE1(Q) + x[2]* PHASE2(Q) (517) The results are reported in Table S2.

where “PHASE1” is HNT-COOH or HNT-PAA and “PHASE2” is
C-S-H or M-S-H.
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Fig. S8 SAXS curves of the composite samples (green markers) along with the linear combination of the corresponding pure phases (black lines) and residuals (red
lines).



Table S2 Parameters extracted from the linear combination of the SAXS
curves. Values in parentheses are standard deviations on the last significant

figures.
x[1] x[2]
M-S-H@HNT-COOH  0.09(1) 0.58 (4)
M-S-H@HNT-PAA 0.16(3) 0.63(3)
C-S-H@HNT-COOH  0.004(2) 0.73 (12)
C-S-H@HNT-PAA 0.005(1) 0.30 (1)

It is worth noting that in this case the residuals are not strictly

linked to the goodness of the final fit while represents the

Hollow cylinders form factor

structural changes induced to the silicate phases by the HNTSs.
The scattering profile of the silicate phases in the composite
could differ from that of the pure phases due to the
heterogeneous nucleation taking place at the halloysites
surface. Thus, the difference between the experimental data
and the linear combination is attributed to the structural
variations induced by the HNTs on the developing silicate

phases.

This model considers the cylinder with an uniform SLD and the SLD inside and outside of the cylinder is the same®:

P(Q) = scale - Vgpey * (Ap)? fol W2[Q, Rspen(1 — x)Y2 Repre(1— x2)1/2] (513%)2 dx (518)

where

¥(q,7,2) = =z Q) — ¥*AQY)] (s19)

Aw) =2];(w)/w (S20)
= qore (s21)

Vsnett = T(R2nen — RZore )L (522)

where J; is the first order Bessel function.



Residual values
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Fig. S9 SAXS curves (grey markers) of HNT, HNT-COOH and HNT-PAA along with the best fit (black lines) and residuals (red lines).
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Fig. S10 SAXS curves (pink markers) of the pure C-S-H phase and composites containing HNT-COOH and HNT-PAA along with the best fit (black lines) and

residuals (red lines).

4



1l L ool L el L Lol

J—— . . !
10" § _S- 3
]  MSH : 10’ 3 M-S-H@HNTs-COOH  F
h [ E — fit E
4 | L ]
10 104 - s
".:_‘ 3| L .T'_‘
g 5 10’4 -
=y . — 2
‘@ 2 2
= 107 3 E a 2| L
g 3 E g 10° 5 3
1 L ]
10 10! 3 3
o | B ]
10 g ; 100 _§ §_
N 1 1 L 20 1 ) 60
10 . - 40
. z '\ - 20 ]
S 2 0 2
- __10 w T __40 @»
i L 3 i | 3
4567777 3 34356 3 347356 20x10 3456 7 33 456 " T3 age 00x10
0.01 1 0.1 0.01 . 0.1
QAT QIAT]
1l L Lol
10° 3 M-S-H@HNTs-PAA 3
3 — fit F
10* 4 L
E 10° 4 3
2
§ 10° 4 3
R E
10] E E_
10° 3 3
1 . . L 60
1 L 40
_k/ [ 1
2
[ P N O a
=
b F-20 g-
E I-40
] | 3
3456 7 2 3 456 " 2 3456 -60x10
0.01 L, 01
QAT
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residuals (red lines).
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