Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supporting information

CO₂ methanation mechanism over Ni/Y₂O₃: An *in situ* diffuse reflectance infrared Fourier transform spectroscopic study

Masitah Hasan, Toshiki Asakoshi, Hiroki Muroyama*, Toshiaki Matsui, Koichi Eguchi

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615–8510, Japan.

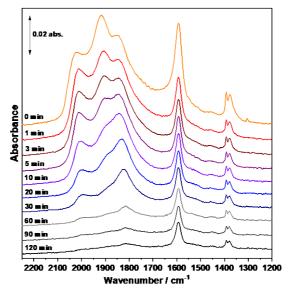


Fig. S1 Infrared spectra of species formed on 20 wt.% Ni/Al $_2$ O $_3$ under the prolonged exposure to 5% H $_2$ –95% N $_2$ at 300 °C for 120 min after the measurement in 10% CO $_2$ –40% H $_2$ –50% N $_2$ (Fig. 3).

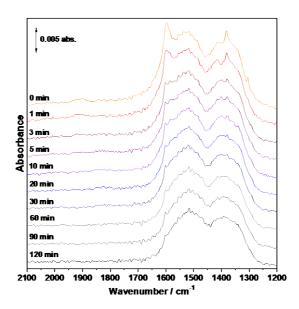


Fig. S2 Infrared spectra of species formed on 20 wt.% Ni/Y_2O_3 under the prolonged exposure to 5% H_2 –95% N_2 at 250 °C for 120 min after the measurement in 10% CO_2 –40% H_2 –50% N_2 (Fig. 6).