Supporting Information

Spectroscopic evidence of the C-N covalent bond formed between two interstellar molecules (ISM): acrylonitrile and ammonia

Fufei Sun, a Min Xie, *a Yu Zhang, a Wentao Song, b Xiaonan Sun a and Yongjun Hu *a

AFFILIATIONS

^a MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.

^b Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy

AUTHOR INFORMATION

*Corresponding Author

E-mail: <u>xiemin@m.scnu.edu.cn</u> (M.X.); <u>yjhu@scnu.edu.cn (Y.J.H.)</u> Corresponding author Telephone: (+86-20)8521-1920 EXT 8713. Fax: (+86-20) 8521-6052.

1 Table of Contents

2	Figure S1. Representative geometric parameters of eight structures of $(AN)_2$ -NH ₃
3	predicted with B3LYP-6-311++g (d p) level.
4	Figure S2. (a) Observed and (b)-(f) calculated IR spectra of (AN) ₂ -NH ₃ cluster in the
5	region of 2800-3600 cm ⁻¹ .
6	Figure S3. Seventeen isomers of $[(AN)_2-NH_3]^+$ have been found and divided into five
7	categories according to their structural characteristics.
8	Figure S4. (a) observed spectra and (b)-(f) calculated spectra of the first type stable
9	structures in region of 2400-3600 cm ⁻¹ .
10	Figure S5. The bond order of $(AN-NH_3)^+$ - I and $(AN)_2-NH_3)^+$ - I(1) were optimized
11	under the basis set of B3LYP/6-311++(d, p).
12	Figure S6. HOMO orbitals of (AN) ₂ , (AN-NH ₃)-I, and [(AN) ₂ -NH ₃]-I(1) optimized
13	under the method of $B3LYP/6-311++(d, p)$.
14	Table S1. Observed and calculated harmonic and anharmonic vibrational
15	wavenumbers and IR intensities of AN-NH ₃ .
16 17	Table S2. Observed and calculated harmonic vibrational wavenumbers and IR intensities of (AN-NH ₃) ⁺ .
18	Table S3. Observed and calculated harmonic and anharmonic vibrational
19	wavenumbers and IR intensities of (AN) ₂ -NH ₃ .
20	Table S4. Observed and calculated harmonic vibrational wavenumbers and IR
21	intensities of $[(AN)_2-NH_3]^+$.

- **3** Figure S1. Representative geometric parameters of eight structures of $(AN)_2$ -NH₃ predicted with
- 4 B3LYP-6-311++g (d p) level.

Figure S2. (a) Observed and (b)--(e) calculated IR spectra of (AN)₂-NH₃ clusters in the 2800–3600-cm⁻
¹ region. The calculated harmonic and anharmonic spectra of the first type stable structures [(AN)₂-NH₃]I(1), -I(2) -I(3), and -I(4) were optimized under the method of B3LYP/6-311++(d, p). Calculated
harmonic spectra are scaled by the factor of 0.96. The green, blue, and orange sticks represent the CH,
NH, and anharmonic vibration modes, respectively.

5 according to their structural characteristics. Geometric and relative of seventeen structures of [(AN)₂-

6 NH₃]⁺predicted at B3LYP-6-311++g (d p) level.

2 3

1

 $[(AN)_2-NH_3]^+-I(1), -I(2)-I(3), -I(4) and -I(5) were optimized under the method of B3LYP/6-311++(d, 1))$ 6

p) with the scaling factor of 0.97 in region of 2400-3600 cm⁻¹. The green and blue sticks represent the

7 CH and NH vibration modes, respectively.

- 3 Figure S5 The bond order of (AN-NH₃)⁺- I and (AN)₂-NH₃)⁺- I(1) were optimized under the basis set 4 of B3LYP/6-311++(d, p).

- 1
- 2 Figure S6. The HOMO orbitals of (AN)₂, (AN-NH₃)-I, and [(AN)₂-NH₃]-I(1) optimized under the
- 3 method of B3LYP/6-311++(d, p).

1	Table S1. Obse	erved and	calculated	harmonic	and anharm	nonic vibrationa	l wavenumbers	and IR

2	intensities of AN-NH ₃ .
	2

Event	Calculations ^[b]							
Expt.	Modes ^[a]	(AN-NH ₃)-I	(AN-NH ₃)-II	(AN-NH ₃)-III	(AN-NH ₃)-IV			
2976	V _{CH2} ^[d]	2967 (3.0) ^[c]	2984 (1.2)	2974 (8)	2976 (8)			
3021	anti-Sym v _{CH2}	3007(38.1)	2992(121.8)	3006 (25.7)	3010 (0.3)			
3058	$\nu_{ m CH}$	3055 (2.9)	3036 (3.3)	3052 (1.4)	3028 (0.7)			
3107	anti-sym v _{CH2}	3114 (9.3)	3123 (1.8)	3107 (24.3)	3099 (1.1)			
3211	$2 v_4 (NH)^{[d]}$	3206 (0.8)	3209 (0.05)	3206 (0.1)	3212 (0.2)			
3239	$2 v_4 (NH)^{[d]}$	3227 (1.0)	3269 (0.1)	3227 (0.9)	3238 (1.1)			
3311	sym $\nu_{\rm NH}$	3345 (6.8)	3349 (1)	3349 (1)	3311 (20)			
3404	anti-sym $v_{\rm NH}$	3456 (13.2)	3463 (6.6)	3464 (5.8)	3425 (34)			
	anti-sym v _{NH}	3466 (4.8)	3465 (6.3)	3464 (5.9)	3438 (1.3)			

3 [a] approximate mode description for four structures AN-NH₃ [b] calculated by B3LYP-6-311++g(d, p); harmonic vibrational

4 wavenumbers are scaled by the factor of 0.96 ^[c] The value in the parentheses is infrared intensity in km mol⁻¹. ^[d] anharmonic

5 vibrational mode.

Et	Calculations ^[b]							
Expt.	Modes ^[a]	[(AN)-NH ₃]+-I	[(AN)-NH ₃] ⁺ -II	[(AN)-NH ₃] ⁺ -III	[(AN)-NH ₃] ⁺ -IV	[(AN)-NH ₃] ⁺ -V		
3404	anti-sym v _{NH}	3348 (110.3) ^[c]	3397 (110.9)	3445 (29.2)	3530 (148.6)	3367 (105.4)		
3292	anti-sym $v_{\rm NH}$	3318 (110.8)	2522 (3000)	1974 (4.2)	3527 (161.1)	3352 (104.8)		
3235	sym $v_{\rm NH}$	3252 (38.8)	3310 (83.2)	3332 (92.6)	3337 (425.5)	3268 (56.6)		
3146	V _{CH}	3090 (19.4)	2964 (9.1)	3067 (6.6)	3065 (8.2)	3058 (7.3)		
3054	anti-sym v _{CH}	3010 (1.0)	3146 (25.5)	3141 (3.2)	3141 (5.4)	3178 (5.9)		
2940	$\mathrm{sym}\nu_{\mathrm{CH}}$	2932 (1.2)		3046 (1.0)	3045 (1.5)	2984 (2.5)		

 Table S2. Observed and calculated harmonic vibrational wavenumbers and IR intensities of (AN-2 NH₃)⁺.

3 [a] approximate mode description for five structures[(AN)-NH₃]⁺ respectively. [b]calculated by B3LYP-6-311++g(d, p), harmonic

4 vibrational wavenumbers are scaled by the factor of 0.97 ^[c] The value in the parentheses is infrared intensity in km mol⁻¹.

Event			Calculations ^[b]				
Expt. –	Modes ^[a]	[(AN) ₂ -NH ₃]-I(1)	[(AN) ₂ -NH ₃]-I(2)	[(AN) ₂ -NH ₃]-I(3)	[(AN) ₂ -NH ₃]-I(4)	[(AN) ₂ -NH ₃]-II(1)	[(AN) ₂ -NH ₃]-III(1)
	anti-sym v _{NH}	3442 (2.4) ^[c]	3443(2.3)	3457 (1.8)	3456 (2.5)	3465(6.1)	3467(4.7)
3399	anti-sym $v_{\rm NH}$	3416 (47.2)	3416 (51.3)	3433 (48.3)	3432 (62.6)	3464 (14.2)	3458 (14.2)
3305	$\operatorname{sym} u_{\mathrm{NH}}$	3310 (45.2)	3309 (51.6)	3329 (40.8)	3328 (59.0)	3350 (1.4)	3345 (7.5)
3238	$2 v_4 \operatorname{NH}^{[d]}$	3259 (2.2)	3264 (17.0)	3248 (2.0)	3261 (2.0)	3245 (0.9)	3263 (1.2)
3205	$2 v_4 \operatorname{NH}^{[d]}$	3227 (3.3)	3226 (14.0)	3224 (2.0)	3228 (4.0)	3226 (1.0)	3230 (1.2)
2104)4 v _{CH}	3112 (1.5)	3108 (10.1)	3098 (14.6)	3124 (17.3)	3125 (9.7)	3126 (5.5)
3104		3107 (0.8)	3106 (1.0)	3128 (0.9)	3097 (20.9)	3121 (5.9)	3115 (11.8)
3061		3036 (26.2)	3039 (3.2)	3050 (3.2)	3054 (5.8)	3055 (4.6)	3058 (6.6)
2970	$V_{\rm CH}$	2968 (107.2)	2965 (118.5)	3054 (35.8)	3050 (4.4)	2997 (118.5)	3056 (3.6)
2010		3023 (1.1)	3012 (22.8)	3039 (0.3)	3027 (32.0)	3029 (26.0)	3031 (17.3)
5019	V _{CH}	3019(2.2)	3019 (2.2)	2981 (122.8)	2980 (128.0)	3028(8.6)	3011 (30.7)

Table S3. Observed and calculated harmonic and anharmonic vibrational wavenumbers and IR intensities of (AN)₂-NH₃.

2 [a] approximate mode description for six structures (AN)₂-NH₃ respectively. [b] calculated by B3LYP-6-311++g(d, p); harmonic vibrational wavenumbers are scaled by the factor of 0.96 [c] The value in the parentheses is

infrared intensity in km mol⁻¹. ^[d] anharmonic vibrational mode.

1 Table S4. Observed and calculated harmonic vibrational wavenumbers and IR intensities of [(AN)₂-

 $2 \ {\rm NH_3}]^+.$

			Calculations ^[b]			_
Event	Modes ^[a]	[(AN) ₂ -NH ₃] ⁺ -				
схрі.		I(1)	II(1)	III(1)	IV(1)	V(1)
3375	anti-sym v _{NH}	3374 (80) ^[c]	3396 (16.5)	3386 (72)	3461 (15.7)	3509 (44.8)
3235	$\operatorname{sym} \nu_{\operatorname{NH}}$	3324 (14)	3333 (20.1)	3319 (80)	3459 (16.3)	3391 (1220)
	anti-sym v _{CH2}	3155 (1.1)	3089 (8.6)	3185 (2.2)	3357 (2.9)	3156 (0.5)
	$\nu_{ m CH}$	3102 (11)	3079 (9.7)	3155 (1.2)	3152 (13.7)	3154 (0.3)
3032	$\nu_{ m CH}$	3083 (4.2)	3049 (0.6)	3084 (4.3)	3108 (12.4)	3081 (10.2)
	$\operatorname{sym} v_{\operatorname{CH2}}$	3062 (0.7)	2996 (4.9)	3064 (2.8)	3085 (15.6)	3062 (9.2)
	anti-sym $v_{\rm CH2}$	2997 (0.3)	2954 (11.3)	3062 (0.7)	3052 (6.0)	3060 (3.0)
	sym v _{CH2}	2948 (0.7)	2921 (2)	2993 (1.0)	2958 (6.8)	3035 (13)
	shared proton	2685 (1500)	2962 (660)	2601 (3000)	2609 (1000)	2335 (3028)

³

5 harmonic vibrational wavenumbers are scaled by the factor of 0.97 ^[c] The value in the parentheses is infrared intensity in km $6 \mod^{-1}$.

7