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A. Supplementary Text 

A.1 Molecular composition of the simulation system 

 Table S1 shows the molecular composition of the simulation system without ionic charge 

imbalance. The concentration of NaCl in both the outer and inner solvent compartments was 154 mM, 

which is equivalent to the concentration of isotonic saline solution. The identical NaCl concentration 

ensured that there was no osmotic pressure across the lipid bilayer. To compensate for the negative 

charges of 1,2-dipalmitoyl-phosphatidylglycerol (DPPG) and the nanoparticle, sodium ions were added 

to each solvent compartment, thereby maintaining their electroneutrality. The amount of DPPG in the 

lipid bilayer was 16 mol%, mimicking the lipid composition of human red blood cell membranes.1 

 Table S2 shows the molecular composition of the simulation system with ionic charge imbalance. 

The number of sodium ions in the inner compartment was set to be higher than that in the outer 

compartment. Hence, the total net charges in the outer and inner compartments were –65 e and +65 e, 

respectively. We preliminarily confirmed that the ±65 e charge imbalance induced a membrane potential 

of 40 mV. The details can be found in Section A.2 and Fig. S2. 

 

 

A.2 Relationship between the net charge difference and the resulting transmembrane electric potential 

 Figure S2 shows the relationship between the net charge difference between the inner and outer 

compartments (ΔQ) and the resulting transmembrane electric potential (∆ψimb). ΔQ was defined as ΔQ = 

qinner – qouter, where qinner and qouter are the total charges in the inner and outer compartments, respectively. 

qinner and qouter were set to be positive and negative charges, respectively, so that the electric potential in 

the inner compartment was higher than that in the outer compartment. The total charge of the entire 

simulation system was set to zero (i.e., qinner + qouter = 0 e) to maintain electroneutrality. As shown in Fig. 

S2, ∆ψimb increased with an increase in ΔQ. From the plot, the ΔQ that yields ∆ψimb = 40 mV, which was 

the target intensity for a complementary transmembrane potential in this study, was determined to be 

+130 e. 
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B. Supplementary Tables and Figures 

 

Table S1 Molecular composition of the simulated system without ionic charge imbalance.a 

Total number of lipid molecules  2304 

Number of DPPC molecules 1936 

Number of DPPG molecules 368 

Number of CG-water sites 123466 

Number of CG-sodium ion sites in outer compartment 1014 

Number of CG-sodium ion sites in inner compartment 894 

Number of CG-chloride ion sites in outer compartment 710 

Number of CG-chloride ion sites in inner compartment 710 

Number of nanoparticles (with surface charge of –120 e) 1 

Total net charge in outer compartment 0 e 

Total net charge in inner compartment 0 e 

a DPPC: 1,2-dipalmitoylphosphatidylcholine; DPPG: 1,2-dipalmitoyl-phosphatidylglycerol; CG: coarse-grained 

 

Table S2 Molecular composition of the simulated system with ionic charge imbalance. 

The net charge difference corresponded to a membrane potential of 40 mV. a 

Total number of lipid molecules  2304 

Number of DPPC molecules 1936 

Number of DPPG molecules 368 

Number of CG-water sites 123466 

Number of CG-sodium ion sites in outer compartment 949 

Number of CG-sodium ion sites in inner compartment 959 

Number of CG-chloride ion sites in outer compartment 710 

Number of CG-chloride ion sites in inner compartment 710 

Number of nanoparticles (with surface charge of –120e) 1 

Total net charge in outer compartment –65 e 

Total net charge in inner compartment +65 e 

a DPPC: 1,2-dipalmitoylphosphatidylcholine; DPPG: 1,2-dipalmitoyl-phosphatidylglycerol; CG: coarse-grained 
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Fig. S1 Projected area of transmembrane pore as a function of applied membrane potential Δψappl. To 

determine the critical applied potential for membrane breakdown (Δψappl,c), molecular dynamics 

simulations without the nanoparticle and without ionic charge imbalance (Δψimb = 0 mV) were performed 

under different Δψappl values. From the results, Δψappl,c was determined to be 230 mV.  

 

 

Fig. S2 Relationship between the net charge difference ΔQ and the transmembrane electric potential 

induced by the ionic charge imbalance, ∆ψimb. ΔQ was defined as ΔQ = qinner – qouter, where the qinner and 

qouter were the total net charges in the inner and outer compartments, respectively. The data was obtained 

at an applied potential ∆ψappl of 0.0 mV.  
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Fig. S3. Cross-sectional side views of transmembrane pores observed in the mode II, III, and IV. The 

blue and red spheres correspond to the hydrophilic heads of DPPC and DPPG, respectively. Waters and 

ions were not shown for clarity.  

 

 

 

 

 

 

 

 

 

Fig. S4. Temporal changes in the projected area of the transmembrane pores in the mode II, III, and IV. 
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Fig. S5. Distributions of lipid head orientations with respect to the applied external electric field (E-field) 

in each mode. The lipid molecules existing in the inner and outer leaflets of the upper lipid bilayer were 

analyzed. θ corresponds to the orientation angle with respect to the applied E-field. P4, Qa, Q0, Na, and 

C1 correspond to types of the coarse-grained sites defined by the MARTINI force field. 
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