Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

1 Supplementary Information

² Magnetism at the interface of non-magnetic Cu and C₆₀

- Purbasha Sharangi,¹ Pierluigi Gargiani,² Manuel Valvidares,² and Subhankar Bedanta^{1, a)}
- ⁴ ¹⁾Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences,
 - National Institute of Science Education and Research (NISER), HBNI, P.O.- Jatni, 752050,

3

5

⁷ ²⁾ Alba Synchrotron Light Source, E-08290 Barcelona, Spain

⁸ We have performed X-ray reflectivity (XRR) to quantify the interdiffusion of Cu/C_{60} and C_{60}/Cu . Figure S1 shows ⁹ the XRR data and its best fit for the sample S2. We have fitted the XRR data using GneX software. From XRR fit ¹⁰ we have seen that interdiffusion is present at both the Cu and C₆₀ interfaces. The thickness of the interdiffused layer ¹¹ are 0.58 and 0.53nm for the Cu/C₆₀ and C₆₀/Cu interfaces.

FIG. 1. XRR fit for sample S2. The red open circles are experimental and the blue solid line represents the fitting using GenX software.

Figure S2 (a-c) show the X-ray absorption spectra (XAS) and X-ray magnetic circular dichroism (XMCD) spectra for sample S3 at 6 T, -6 T and 0 T, respectively.

¹⁵ We have performed the sum rule analysis of XMCD data for sample S2 at 6 T. Figure S3 shows the XAS and ¹⁸ XMCD spectra and their integration for sample S2. The calculated magnetic moment for Cu is 0.0071 μ_B /atom.

⁶ India

^{a)}Electronic mail: sbedanta@niser.ac.in

FIG. 2. XAS and XMCD spectra of the sample S3 measured at (a) 6 T, (b) -6 T and (c) 0 T magnetic field at Cu $L_{2,3}$ edges. All the measurements were performed at 1.7 K.

FIG. 3. Cu $L_{2,3}$ XAS (a) and XMCD (b) spectra and their integrations calculated from the spectra are shown for the sample S2 at 6 T. The red dotted line is the integral of the XAS after subtracting two-step-like function from XAS spectra. The green solid line represents the spectra after subtracting a two-step function from XAS spectra. The p, q and r are the three integrals needed in the sum-rule analysis.