Electronic Supplementary Information

Sequential assignment of NMR spectra of peptides

at natural isotopic abundance with Zero and Ultra Low-Field-TOCSY

Alexey S. Kiryutin,^{*a} Ivan V. Zhukov,^a Fabien Ferrage,^b Geoffrey Bodenhausen,^b

Alexandra V. Yurkovskaya,^a Konstantin L. Ivanov^{†a}

^a International Tomography Center, Siberian Branch of the Russian Academy of Sciences and Novosibirsk State University, Novosibirsk, 630090, Russia

^b Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France

* Corresponding authors, emails: <u>kalex@tomo.nsc.ru</u> (A. S. Kiryutin)

+ Konstantin L. Ivanov passed away on March 5th 2021 at the age of 44 years as a consequence of Covid-19, while the final revisions of this paper were being prepared.

This file contains:

- 1. Relaxation data for Boc-Met-enkephalin
- 2. 2D-NMR spectra of Boc-Met-enkephalin

1. Relaxation data for Boc-Met-enkephalin

Here we present relaxation data for the system under study, focusing on the carbon nuclei of interest (C' and Ca carbons) and Ha protons. These data are summarized in **Tables S1** and **S2**. The measurements at high field were done in a standard way (inversion-recovery experiments) at 9.4 and 16.4 T. Measurements at low fields were done using fast field-cycling. In such experiments, we first let the spins relax to equilibrium at $B_0 = 9.4$ T. Subsequently, the sample is shuttles to obtain a field switch $B_0 \rightarrow B_{rel}$ and spins start to relax to a new equilibrium at the B_{rel} field. The relaxation delay τ_{rel} is incremented to monitor the evolution of the magnetization at this field. Subsequently, the field is switched back $B_{rel} \rightarrow B_0$ and the NMR spectrum acquired. By integrating signals in the NMR spectra we obtain the relaxation behavior of nuclei as a function of τ_{rel} . Typical relaxation curves of this kind measured at $B_{rel} = 0.3$ T are shown in **Figure S1** for carbonyl carbons and Ca carbons of Boc-Metenkephalin. To determine relaxation times these curves were fitted to mono-exponential functions, which provide good fits in most cases.

An unexpected initial increase of the polarization of the C α carbon is caused by cross-relaxation in directly bound ¹H-¹³C spin pairs. As has been shown before, cross-relaxation manifests itself in the ¹³C relaxation trace, giving rise to a bi-exponential time dependence.^{1, 2} Here, in most cases, we were able to follow only the slow component of such bi-exponential relaxation curves. The analysis of such biexponential curves is discussed at length in a previous publication².

Table S1. Apparent longitudinal relaxation times $T_1^{app}({}^{13}C)$ [s] of Boc-Met-enkephalin carbonyl- and α -carbons at 25 °C, $B_0 = 9.4$ and 0.3 T.

Site	9.4 T	0.3 T
Met C'	5.9±0.4	3.5±1.9
Tyr C'	2.5±0.2	3±1.5
Phe C'	3.0±0.2	2.3±0.7
Gly-1 C'	3.0±0.3	4±2.5
Gly-2 C'	2.2±0.2	2.9±1.5
Tyr Cα	0.35±0.03	0.13±0.17*
Phe Cα	0.29±0.02	0.44±0.33*
Met Ca	0.45±0.02	0.7±0.76*
Gly-2,3 Cα	0.24±0.01	0.19±0.9*

Values marked with a star (*) were obtained by fitting relaxation curves with growing mono-exponential functions. These values correspond to the slow components of the bi-exponential cross-relaxation kinetics of $C\alpha$ carbons.

Table S2. Apparent longitudinal relaxation times $T_1^{app}(^1H)$ [s] of α -protons in Boc-Met-enkephalin at 25 °C, $B_0 = 9.4$ and 16.4 T.

Site	9.4 T	16.4 T
Met Ha	1.3±0.1	2.0±0.1
Tyr Hα	1.3±0.1	2.1±0.1
Phe Hα	1.3±0.1	1.9±0.1
Gly-2,3 Hα	0.4±0.05	0.8±0.1

Figure S1. Relaxation curves of (a) carbonyl and (b) α -carbons of Boc-Met-enkephalin at 25° C, measured at $B_{rel} = 0.3$ T. The field switching duration was 200 ms, the stabilization delay prior to detection at high field was 25 ms, the relaxation delay was 8 s; 864 scans were collected for each value of τ_{rel} . The overall duration of the experiments was ca. 24 hours.

2. 2D-NMR spectra of Boc-Met-enkephalin

In this section, we present complete 2D-NMR spectra of the compound under study, highlighting various ¹H-¹³C correlations.

In **Figure S2** we present the complete ZULF-TOSCY spectrum, whereas in **Figure 3b** only part of this 2D spectrum is shown, highlighting the region corresponding to carbonyl carbons and H α protons. In the full spectrum, one can see additional resonances, corresponding to correlations in aromatic rings of tryptophan and phenyl-alanine, some correlations in the methionine side chain, and all correlations within Boc moiety. Two distinct Boc conformations exist possibly the *cis* and *trans* conformation of the amide bond, each giving rise to a specific set of cross-peaks.

Figure S2. Complete ¹³C-¹H ZULF-TOCSY spectrum of 83 mM Boc-Met-enkephalin, pH 10.9, 25°C, taken at $B_0 = 9.4$ T. The part of the spectrum shown in **Figure 3b** of the main text is highlighted by a grey rectangle. Experimental details: 80 increments in the indirect dimension, 256 scans per transient, relaxation delay 6 s, sample transfer time 403 ms in each direction, $B_{UL}=50$ nT, $\tau_{opt} = \tau_{mix}^{opt} = 100$ ms (corresponding to $J_{CH} = 2.5$ Hz), total acquisition time ca. 58 hours. The time-domain signal $S(t_1,t_2)$ was multiplied by a 90° shifted sine squared window function in both dimensions prior to 2D Fourier transformation. The resulting spectrum $S(f_1,f_2)$ is given by 512×1024 data points. Hα-Cα correlations are not visible due to fast relaxation of the α-carbons.

Likewise, in **Figure S3** we present the complete HMBC spectrum, highlighting some of the crosspeaks belonging to aromatic protons of tryptophan and phenylalanine, to correlations in the methionine side-chain, and to correlations within the Boc-moiety. Note that the two sets of cross-peaks correspond to two different Boc conformations.

5

Figure S3. Complete ¹H-¹³C HMBC spectrum of 83 mM Boc-Met-enkephalin, pH 10.9, 25 °C, $B_0 = 9.4$ T. The indirect dimension was sampled with 1024 values of t_1 were over 180 ppm (resolution 17.7 Hz/point), 56 scans per transient, the long range high-pass $J^L({}^{13}C - {}^{1}H)$ -filter delay was optimized to 1 Hz, the low-pass $J^1({}^{13}C - {}^{1}H)$ -filter delay was optimized to 100 Hz to suppress direct correlations, the relaxation delay was 3 s, the total acquisition time ca. 70 hours. The time-domain signal $S(t_1,t_2)$ was multiplied by a 90° shifted sine squared window function in both dimensions, the spectrum $S(f_1,f_2)$ is represented by 2048×4096 data points.

Finally, **Figure S4** shows the HSQC spectrum of Boc-Met-enkephalin. One can see that the signals of interest, corresponding to correlations between the carbonyl carbons and the H α -protons, are missing because the inter-pulse delays in the polarization transfer block are not optimal for detecting these cross-peaks.

Figure S4. ¹H-¹³C HSQC spectrum of 83 mM Boc-Met-enkephalin, pH 10.9, 25 °C, 9.4 T. Parameters: 256 increments of t_1 were used to sample the indirect dimension over 180 ppm (resolution 247.6 Hz/point), 32 scans per transient, delays in INEPT transfer optimized for $J^{1}({}^{13}C - {}^{1}H)$ =130 Hz, relaxation delay 3 s, total acquisition time ca. 8 hours. The time-domain signal $S(t_1,t_2)$ was multiplied by a 90° shifted sine squared window function in both dimensions, the spectrum $S(f_1,f_2)$ is represented by 2048×2048 data points.

- 1. I. V. Zhukov, A. S. Kiryutin, A. V. Yurkovskaya, Y. A. Grishin, H.-M. Vieth and K. L. Ivanov, *Phys. Chem. Chem. Phys.*, 2018, 20, 12396-12405.
- 2. N. Bolik-Coulon, P. Kaderavek, P. Pelupessy, J. N. Dumez, F. Ferrage and S. F. Cousin, *J. Magn. Reson.*, 2020, 313.