Electronic Supplementary Information:

Evaluation of Ar tagging toward the vibrational spectra and zero point energy of X⁻HOH, X⁻DOH and X⁻HOD, X=F, Cl, Br

Wikorn Punyain^{a,b}, Kaito Takahashi^{a*}

^a Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 10617

Taiwan

^b Department of Chemistry, Faculty of Science, NU-Research Center for Petroleum,

Petrochemicals and Advanced Materials, Naresuan University T.Thapo, A.Muang,

Phitsanulok 65000 Thailand

email:kt@gate.sinica.edu.tw

For Ar.F⁻H₂O, we have compared the zero point vibration energy dependence for the full 9 dimensional calculation versus lower dimension cuts. Harmonic frequencies calculated by various quantum chemistry methods are given. For Ar.Cl⁻H₂O and Ar.Br⁻H₂O, we compare the vibrational spectra on the position of Ar tagging. In addition, the peak position and absorption intensity for F⁻H₂O, F⁻HOD, F⁻DOH, and Ar.X⁻H₂O (X=F, Cl, Br) calculated using MP2/6-311++G(3df,3pd), as well as those for Ar.X⁻H₂O Ar.X⁻HOD and Ar.X⁻DOH calculated using B3LYP/6-31+G(d,p) are given.

9 Dimensional calculations

We can look at the problem concerning the Ar-tagging from two points, the vibrational effect of how the addition of the Ar vibrational modes perturbs the vibrational spectra of the X⁻H₂O, and from the variation of the electronic state of the X⁻H₂O due to the existence of the Ar atom. To answer all the problems, we require a 9 dimensional (9D) calculation for all Ar.X⁻H₂O system studied here. However, it is beyond our capability to perform such calculations for all systems. So we have evaluated the effect of the full 9D calculation toward the zero point energy (ZPE) of Ar.F⁻H₂O perp conformer using MP2/6-311++G(3df,3pd).

To perform the 9D simulation, we could not use 9 grid points for all degrees of freedom (9⁹=387,420,489 points). Thus we reduced it to 7 points for the low frequency vibrations modes involving Ar....F⁻H₂O VDW motions and 5 points for the 6 vibrational modes for F⁻H₂O, resulting in 7^35^6 = 5,359,375 points. To confirm that such a grid is valid, we have performed several 3D vibrations. We have listed the ZPE calculated by different grid points for the different frequency regimes in Table S1. Here High frequency means the H₂O bending, IHB OH stretching, free OH stretching modes, while the middle frequency means the X⁻...H₂O VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging modes, and the low frequency means the vibrational modes involving the Ar motion. One can see that for the high and middle frequency range, which corresponds to the vibrations of F⁻H₂O, 5 grid points can give ZPE values within 1 cm⁻¹ compared to that of 9 grid points. On the other hand, for the low frequency modes, we need 7 points to give ZPE values within 5 cm⁻¹ (~0.015 kcal mol⁻¹).

Table S1: Grid point dependence of the Zero point energy, in cm⁻¹, for the 3D vibrational calculation for Ar.F⁻H₂O Perp conformer obtained using MP2/6-311++G(3df,3pd)

	9 pt	7pt	5pt
High (H ₂ O intramolecular)	3684.1	-	3683.3
Mid (F ⁻ H ₂ O intermolecular)	1173.5	-	1173.2
Low (ArFH2O VDW)	336.2	331.6	276.6

Next, we compare the ZPE obtained from the 9D vibrational calculation, 4903 cm⁻¹, versus the 6D+3D harmonic oscillator model mentioned in the main text, 4932 cm⁻¹. We can see that an error of 30 cm⁻¹ (~0.08 kcal mol⁻¹) will be expected from

using the present 6D+3D harmonic oscillator model to obtain the absolute value of ZPEs.

Binding energies of Ar

Below we list the binding energies of Ar for the X⁻H₂O, X⁻HOD, and X⁻DOH systems.

Table S2: Electronic binding energy, in kcal mol⁻¹, of the Ar atom for Ar.X⁻H₂O obtained from the electronic energies calculated by MP2, CCSDS(T), and B3LYP.

MP2/6-311++G(3df,3pd)	Perp conformer	Lin conformer	Out conformer
Ar.F ⁻ H ₂ O	2.18	1.86	
Ar.Cl ⁻ H ₂ O	1.57	1.25	
Ar.Br ⁻ H ₂ O	1.37		1.28
CCSD(T)/6-311++G(3df,3pd)	Perp conformer	Lin conformer	Out conformer
Ar.F ⁻ H ₂ O	2.16	1.92	
Ar.Cl ⁻ H ₂ O	1.51	1.23	
Ar.Br ⁻ H ₂ O	1.36		1.23
B3LYP/6-31+G(d,p)	Perp conformer	Lin conformer	Out conformer
Ar.F ⁻ H ₂ O		0.77	
Ar.Cl ⁻ H ₂ O	0.24	0.21	
Ar.Br ⁻ H ₂ O	0.64		0.64

Table S3: Free energy correction, in kcal mol⁻¹, due to rotational entropy contributions for the Perp conformer of Ar.X⁻DOH and Ar.X⁻HOD

Temp (K)	Ar.F ⁻ DOH	Ar.F ⁻ HOD	Ar.Cl ⁻ DOH	Ar.Cl ⁻ HOD	Ar.Br ⁻ DOH	Ar.Br ⁻ HOD
	Perp	Perp	Perp	Perp	Perp	Perp
50	-0.90	-0.90	-0.97	-0.97	-1.02	-1.02
100	-2.00	-2.01	-2.14	-2.15	-2.24	-2.25
150	-3.18	-3.19	-3.40	-3.41	-3.54	-3.55

Table S4: Free energy correction, in kcal mol⁻¹, due to rotational entropy contributions for the Lin and Out conformer of Ar.X⁻DOH and Ar.X⁻HOD

Temp (K)	Ar.F⁻DOH	Ar.F ⁻ HOD	Ar.Cl ⁻ DOH	Ar.Cl ⁻ HOD	Ar.Br ⁻ DOH	Ar.Br ⁻ HOD
	Lin	Lin	Lin	Lin	Out	Out
50	-0.76	-0.79	-0.84	-0.86	-1.02	-1.03
100	-1.73	-1.79	-1.88	-1.93	-2.25	-2.25
150	-2.77	-2.87	-3.00	-3.07	-3.55	-3.56

Table S5: The anharmonic ZPE difference, in kcal mol⁻¹, between X⁻HOD and X⁻DOH for the intramolecular and intermolecular modes calculated using MP2/6-311++G(3df,3pd)

Halide	intramolecular 3D	intermolecular 3D	6D
F-	-0.48	0.37	0.00
Cl-	-0.09	0.31	0.18
Br⁻	-0.07	0.29	0.17

Table S6: Shift of the peak position, in cm⁻¹, for the HOD vibrations for X⁻HOD and X⁻DOH in comparison to bare HOD calculated using MP2/6-311++G(3df,3pd)

Vibrational Modes	F ⁻ HOD	Cl ⁻ HOD	Br ⁻ HOD
Bending	162	116	91
OD stretch	111	-7	-9
OH stretch	-2329	-651	-489
Vibrational Modes	F ⁻ DOH	Cl ⁻ DOH	Br ⁻ DOH
Bending	-96	0	5
OD stretch	-1660	-452	-346
OH stretch	3	5	-27

Vibrational Spectra

In Tables S7 to S9, we have presented the harmonic frequencies calculated by different quantum chemistry methods. As one can see, compared to the CCSD(T) results, the difference in the harmonic frequencies by B3LYP is at most 30 cm⁻¹ for the high frequency X⁻H₂O vibrations. Consistent with the weaker binding energy by B3LYP, the vibrations involving Ar have much smaller frequencies. On the other hand, for MP2, the Free OH stretching frequencies are off by 60 to 80 cm⁻¹. The IHB OH stretching mode for Ar.F⁻H₂O is off by 150 cm⁻¹. However, we should note that for the highly anharmonic IHB OH stretching mode, it is hard to evaluate the validity by harmonic frequencies. We also evaluated the overlap of the mass weighted Cartesian normal mode eigenvectors calculated using CCSD(T), and MP2. We found that all modes had overlaps greater than 98%. This signifies that the characteristics of the vibrational modes are the same for the two methods.

Looking at the harmonic frequencies for the Ar tagged versus bare clusters, we see that the differences are within 10 cm⁻¹ except for the IHB OH stretching and the H₂O in plane wagging modes. Even for these two modes, the shift is at most 40 cm⁻¹.

Vibrational mode	Ar perp	Ar perp	Bare	Ar Lin	Bare
	CCSD(T)	MP2	MP2	B3LYP	B3LYP
Free OH Str	3854	3938	3939	3864	3864
IHB OH Str	2198	2039	2052	2220	2182
HOH Bend	1727	1717	1710	1703	1700
H2O Out of plane wag	1161	1228	1231	1173	1177
H2O In plane wag	567	599	592	558	561
H2OF VDW Str	388	416	412	391	393
Ar Out of Plane wag	97	101		48	
Ar In plane wag	67	68		25	
ArH ₂ O.F Str	12	46		14	

Table S7 Comparison of harmonic frequencies, in cm⁻¹, by calculated by different quantum chemistry methods for F⁻H₂O and Ar.F⁻H₂O

Vibrational mode	Ar perp	Ar perp	Bare	Ar Lin	Bare
	CCSD(T)	MP2	MP2	B3LYP	B3LYP
Free OH Str	3867	3936	3938	3874	3873
IHB OH Str	3372	3366	3387	3363	3373
HOH Bend	1690	1680	1677	1666	1664
H2O Out of plane wag	744	771	769	746	740
H2O In plane wag	372	387	374	348	340
H2OCl VDW Str	205	202	198	188	181
Ar Out of Plane wag	70	80		35	
Ar In plane wag	51	53		32	
ArH ₂ O.Cl Str	34	35		7	

Table S8 Comparison of harmonic frequencies, in cm⁻¹, by calculated by different quantum chemistry methods for Cl⁻H₂O and Ar.Cl⁻H₂O

Table S9 Comparison of harmonic frequencies, in cm⁻¹, by calculated by different quantum chemistry methods for Br^-H_2O and $Ar.Br^-H_2O$

Vibrational mode	Ar perp	Ar perp	Bare	Ar Lin	Bare
	CCSD(T)	MP2	MP2	B3LYP	B3LYP
Free OH Str	3867	3934	3936	3870	3872
IHB OH Str	3472	3492	3513	3443	3448
HOH Bend	1683	1671	1669	1658	1659
H2O Out of plane wag	675	682	680	721	717
H2O In plane wag	330	333	314	340	345
H2OCl VDW Str	164	160	156	147	151
Ar Out of Plane wag	68	78		31	
Ar In plane wag	47	51		14	
ArH ₂ O.Br Str	26	26		10	

Below we list and plot the results for the vibrational spectra calculations for the Ar.X⁻H₂O where X=Cl and Br calculated using B3LYP/6-31+G(d,p).

Fig S1. The calculated vibrational spectra of Ar.Cl⁻H₂O at two Ar positions. The peak positions and intensities were calculated using B3LYP/6-31+G(d,p)

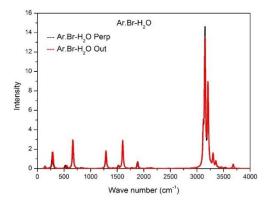


Fig S2. The calculated vibrational spectra of Ar.Br⁻H₂O at two Ar positions. The peak positions and intensities were calculated using B3LYP/6-31+G(d,p)

Table S10 The Calculated peak positions, in cm⁻¹, and absorption intensity, in km mol⁻¹, of Ar.F⁻H₂O, Ar.F⁻HOD, Ar.F⁻DOH obtained using B3LYP/6-31+G(d,p). Experimental peak positions of Ayotte et al.¹ are given in parenthesis "()", while the theoretical results for F⁻H₂O are given in brackets "[]". The quantum numbers in the Assignment correspond to (X⁻...H₂O VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.F ⁻ H ₂ O I	Lin	Ar.F ⁻ HOD	Ar.F ⁻ HOD Lin		Lin
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity
(1,0,0,0,0,0)	423 [428]	158 [145]	405	124	397	167
(0,1,0,0,0,0)	542 [542]	42 [41]	429	58	494	50
(2,0,0,0,0,0)	822 [830]	0 [0]	800	0	778	4
(0,2,0,0,0,0)	1073 (1083) [1075]	18 [17]	842	1	877	1
(0,0,1,0,0,0)	1156 [1161]	118 [120]	1157	112	832	81
(3,0,0,0,0,0)	1205 [1213]	6 [8]	1235	4	1209	0
(0,0,2,0,0,0)	2172 [2148]	45 [23]	2166	8	1658	16
(0,0,0,1,0,0)	1595 (1650)	553 [596]	1624	282	1209	34
	[1630]					
(1,0,0,1,0,0)	2068 [2102]	1 [2]	2010	6	1658	2
(0,0,0,0,1,0)	1651 (1523)	1240 [1690]	1646	1598	1269	1261
	[1558]					
(1,0,0,0,1,0)	2183 [2016]	16 [7]	2049	83	1511	5
(0,1,0,0,1,0)	2210 [2311]	11 [20]	2305	29	1770	8
(0,0,1,0,1,0)	2642 [2632]	11 [25]	2704	2	2225	13
(0,0,0,2,0,0)	3257 [3120]	23 [4]	3246	17	2363	8
(0,0,0,0,2,0)	3289 [2996]	54 [46]	2981	17	2442	25
(0,0,0,1,1,0)	3257 [3018]	23 [17]	3109	1	2362	19
(0,0,0,0,0,1)	3678 (3682) [3678]	4 [2]	2617	20	3681	2

Table S11 The Calculated peak position, in cm⁻¹, and absorption intensity, in km mol⁻¹, of Ar.Cl⁻H₂O, Ar.Cl⁻HOD, Ar.Cl⁻DOH Perp obtained using B3LYP/6-31+G(d,p). Experimental peak positions of Horvath et al.² are given in parentheses "()", while the theoretical results for Cl⁻H₂O by B3LYP are given in brackets "[]". Results for Cl⁻H₂O by MP2/6-311++G(3df,3pd) are given in curly brackets "{}". Results for Ar.Cl⁻H₂O by MP2/6-311++G(3df,3pd) are given in quotation marks "". The quantum numbers in the Assignment correspond to (X⁻...H₂O VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.Cl ⁻ H ₂ O	Ar.Cl ⁻ H ₂ O Perp		Ar.Cl ⁻ HOD Perp		Ar.Cl ⁻ DOH Perp	
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity	
(1,0,0,0,0,0)	189 [180]	25 [22] {26}	180	27	179	22	
	{194} "198"	"27"					
(0,1,0,0,0,0)	338 [300]	44 [63] {57}	256	37	270	49	
	{341} "361"	"68"					
(2,0,0,0,0,0)	372 [354]	0 [0] {0} "0"	354	0	353	0	
	{381} "391"						
(0,2,0,0,0,0)	550 [550]	0 [10] {11}	488	5	471	5	
	{643} "688"	"10"					
(0,0,1,0,0,0)	711 (738)	62 [127] {88}	708	104	522	97	
	[704] {731}	"76"					
	"733"						
(3,0,0,0,0,0)	519 [524]	0 [0] {0} "0"	525	0	523	0	
	{565} "579"						
(0,0,2,0,0,0)	1376 (1404)	68 [69] {74}	1360 (1369)	85	1024 (1057)	28	
	{1411} [1363]	"72"					
	"1415"						
(0,0,0,1,0,0)	1610 (1653)	67 [59] {81}	1472 (1507)	58	1371 (1404)	91	
	[1621] {1623}	"78"					
	"1624"						
(0,1,0,1,0,0)	1913 [1910]	20 [24] {28}	1701	18	1642	16	
	{1934}	"35"					
	"1960"						
(0,0,0,0,1,0)	3030 (3146)	1041 [846]	3075 (3156)	330	2299 (2357)	554	
	[3078] {3081}	{970} "933"					
	"3057"						
(1,0,0,0,1,0)	3202 [3277]	18 [20] {11}	3278	21	2491	7	

	{3194}	"8"				
	"3202"					
(0,0,0,2,0,0)	3243 (3287)	65 [45] {11}	2916 (2990)	74	2719 (2880??)	1
	[3197] {3221}	"12"				
	"3230"					
(0,0,0,0,0,1)	3688 (3697)	10 [10] {20}	2711 (2716)	10	3699 (3697)	10
	[3684] {3750}	"18"				
	"3749"					

Table S12 The Calculated peak position, in cm⁻¹, and absorption intensity, in km mol⁻¹, of Ar.Br⁻H₂O, Ar.Br⁻HOD, Ar.Br⁻DOH conformer 1 obtained using B3LYP/6-31+G(d,p). Experimental peak positions of Horvath et al.² are given in parentheses "()", while the theoretical results for Br⁻H₂O are given in brackets "[]". Results for Br⁻H₂O by MP2/6-311++G(3df,3pd) are given in curly brackets "{}". Results for Ar.Br⁻H₂O by MP2/6-311++G(3df,3pd) are given in quotation marks "". The quantum numbers in the Assignment correspond to (X⁻...H₂O VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.Br ⁻ H ₂ O Per	Ar.Br ⁻ H ₂ O Perp		Ar.Br ⁻ HOD Perp		Ar.Br ⁻ DOH Perp	
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity	
(1,0,0,0,0,0)	146 [144] {152} "157"	8 [9] {8} "8"	141	10	141	8	
(0,1,0,0,0,0)	269 [285] {271} "200"	42 [35] {54} "59"	239	37	250	45	
(2,0,0,0,0,0)	288 [287] {301} "310"	1 [24] {0} "6"	280	0	280	0	
(0,2,0,0,0,0)	496 [542] {507} "568"	9 [10] {10} "10"	458	5	468	7	
(0,0,1,0,0,0)	624 (664) [666] {643} "646"	61 [104] {86} "74"	668	84	496	80	
(3,0,0,0,0,0)	427 [430] {446} "449"	0 [0] {0} "0"	417	0	418	0	
(0,0,2,0,0,0)	1212 (1262) [1286] {1249} "1255"	52 [63] {55} "54"	1283 (1227)	65	969 (959)	27	
(0,0,0,1,0,0)	1606 (1647) [1604] {1616} "1615"	101 [102] {110} "112"	1448 (1484)	60	1369 (1409)	98	
(0,1,0,1,0,0)	1872 [1883] {1883} "1910"	28 [24] {25} "18"	1704	6	1620	16	
(0,0,0,0,1,0)	3151 (3296) [3151] {3262} "3245"	280 [239] {572} "464"	3184(3294)	541	2361 (2445)	498	
(1,0,0,0,1,0)	3308 [3461] {3425} "3411"	30 [49] {25} "20 "203"	3341	36	2511	16	
(0,0,0,2,0,0)	3213 (3238) [3206] {3184} "3185"	417 [275] {70} "309"	2888 (2950??)	23	2717	2	
(1,0,0,2,0,0)	3366 [3354]	19 [23] {12}	3108	20	2873	0	

	{3352} "3345"	"20"				
(0,0,0,0,0,1)	3679 (3695) [3682]	8 [14] {15}	2708	8	3724	7
	{3742} "3743"	"25"	(2720)		(3688)	

Table S13. The Calculated peak positions, in cm⁻¹, and absorption intensity, in km mol⁻¹, of F⁻H₂O, F⁻HOD, and F⁻DOH obtained using MP2/6-311++G(3df,3pd). The quantum numbers in the Assignment correspond to ($X^-...H_2O$ VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	F ⁻ H ₂ O		F-HOD		F-DOH	
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity
(1,0,0,0,0,0)	462	180	407	82	428	217
(0,1,0,0,0,0)	569	37	444	109	526	47
(2,0,0,0,0,0)	890	3	830	2	834	1
(0,2,0,0,0,0)	1129	16	883	2	938	1
(0,0,1,0,0,0)	1218	109	1199	104	1035	228
(3,0,0,0,0,0)	1293	100	1288	119	1227	53
(0,0,2,0,0,0)	2499	12	2480	10	2024	32
(0,0,0,1,0,0)	1614	73	1538	145	1280	59
(0,1,0,1,0,0)	2166	41	2019	31	1745	1
(0,0,0,0,1,0)	1423	2307	1423	2307	1103	1105
(1,0,0,0,1,0)	1957	28	1825	23	1532	1
(0,1,0,0,1,0)	2015	54	1971	127	1632	8
(0,0,1,0,1,0)	2592	40	2549	11	2120	7
(0,0,0,2,0,0)	3216	2	3072	6	2251	3
(0,0,0,0,2,0)	2931	36	2850	25	2058	60
(0,0,0,1,1,0)	2977	27	2859	10	2231	2
(0,0,0,0,0,1)	3754	1	2875	17	3755	1

Table S14. The Calculated peak positions, in cm⁻¹, and absorption intensity, in km mol⁻¹, of the two conformers of Ar.F⁻H₂O Lin obtained using MP2/6-311++G(3df,3pd). The quantum numbers in the Assignment correspond to $(X^-...H_2O$ VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.F ⁻ H ₂ O Perp		Ar.F ⁻ H ₂ O Lin	
Assignment	Peak	Intensity	Peak	Intensity
	position		position	
(1,0,0,0,0,0)	466	166	453	207
(0,1,0,0,0,0)	576	44	569	40
(2,0,0,0,0,0)	899	4	875	1
(0,2,0,0,0,0)	1145	16	1130	20
(0,0,1,0,0,0)	1212	94	1210	106
(3,0,0,0,0,0)	1306	100	1275	45
(0,0,2,0,0,0)	2516	7	2493	7
(0,0,0,1,0,0)	1616	81	1623	96
(0,1,0,1,0,0)	2176	37	2176	47
(0,0,0,0,1,0)	1428	2334	1476	2732
(1,0,0,0,1,0)	1974	40	2022	23
(0,1,0,0,1,0)	2027	49	2042	27
(0,0,1,0,1,0)	2600	35	2602	29
(0,0,0,2,0,0)	3235	3	3201	3
(0,0,0,0,2,0)	2942	32	2970	43
(0,0,0,1,1,0)	2973	19	3018	45
(0,0,0,0,0,1)	3756	2	3755	1

Table S15. The Calculated peak position, in cm⁻¹, and absorption intensity, in km mol⁻¹, of Ar.Cl⁻H₂O, Ar.Cl⁻HOD, Ar.Cl⁻DOH Lin conformer obtained using B3LYP/6-31+G(d,p).The quantum numbers in the Assignment correspond to $(X^{-}...H_{2}O$ VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.Cl ⁻ H ₂ O Lin		Ar.Cl ⁻ HOD Lin		Ar.Cl ⁻ DOH Lin	
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity
(1,0,0,0,0,0)	189	27	177	26	176	22
(0,1,0,0,0,0)	338	44	248	39	264	50
(2,0,0,0,0,0)	372	0	349	0	347	0
(0,2,0,0,0,0)	551	0	471	5	489	6
(0,0,1,0,0,0)	711	63	702	107	518	99
(3,0,0,0,0,0)	519	0	516	0	513	0
(0,0,2,0,0,0)	1375	70	1348	77	1016	28
(0,0,0,1,0,0)	1610	70	1467	64	1370	92
(0,1,0,1,0,0)	1913	21	1692	11	1636	16
(0,0,0,0,1,0)	3031	1063	3089	334	2309	545
(1,0,0,0,1,0)	3202	19	3261	14	2499	12
(0,0,0,2,0,0)	3244	65	2904	62	2717	1
(0,0,0,0,0,1)	3688	10	2710	9	3701	6

Table S16. The Calculated peak position, in cm⁻¹, and absorption intensity, in km mol⁻¹, of Ar.Br⁻H₂O, Ar.Br⁻HOD, Ar.Br⁻DOH conformer 2 obtained using B3LYP/6-31+G(d,p). The quantum numbers in the Assignment correspond to $(X^{-}...H_{2}O$ VDW stretching, H₂O in-plane wagging, H₂O out-of-plane OH wagging, H₂O bending, IHB OH stretching, free OH stretching).

	Ar.Br ⁻ H ₂ O Out A		Ar.Br ⁻ HOD Out		Ar.Br ⁻ DOH Out	
Assignment	Peak position	Intensity	Peak position	Intensity	Peak position	Intensity
(1,0,0,0,0,0)	146	7	140	10	141	8
(0,1,0,0,0,0)	270	42	242	36	253	44
(2,0,0,0,0,0)	288	1	280	0	280	0
(0,2,0,0,0,0)	499	9	462	5	464	6
(0,0,1,0,0,0)	625	60	666	87	495	82
(3,0,0,0,0,0)	428	0	417	0	417	0
(0,0,2,0,0,0)	1214	50	1279	65	966	26
(0,0,0,1,0,0)	1606	97	1447	30	1369	99
(0,1,0,1,0,0)	1872	23	1705	7	1623	16
(0,0,0,0,1,0)	3150	354	3189	455	2362	495
(1,0,0,0,1,0)	3307	27	3341	34	2511	16
(0,0,0,2,0,0)	3211	388	2884	28	2717	2
(1,0,0,2,0,0)	3365	16	3102	17	2872	0
(0,0,0,0,0,1)	3679	8	2707	8	3725	7

XYZ geometries

Below are the optimized geometries for the Ar.X⁻H₂O (X=F, Cl, and Br) obtained at MP2/6-311+G(3df,3pd) level of theory. Unit: Angstrom.

F⁻H₂O

1 11	20			
	0	-1.189	-0.107	0.000
	Н	-0.123	-0.079	0.000
	Η	-1.409	0.825	0.000
	F	1.227	0.012	0.000
F ⁻ H	$_{2}OP$	erp		
	0	-1.510	-1.153	0.000
	Н	-2.456	-1.300	0.000
	Н	-1.452	-0.087	0.000
	F	-1.413	1.262	0.000
	Ar	1.595	-0.042	0.000
F ⁻ H	20 L	in		
	0	-3.303	-0.062	0.000
	Н	-3.474	0.880	0.000
	Η	-2.242	-0.091	0.000
	F	-0.878	-0.067	0.000
	Ar	2.225	0.017	0.000
Cl-I	H_2O			
	0	0.031	1.981	0.000
	Н	0.163	1.003	0.000
	Н	-0.926	2.028	0.000
	Cl	0.031	-1.111	0.000
Ar.0	Cl ⁻ H ₂	O Perp		
	0	-0.602	0.230	-1.974
	Н	0.087	-0.020	-1.305
	Н	-0.790	1.143	-1.727
	Cl	1.516	-0.037	0.339
	Ar	-1.200	-2.573	-4.089
Ar.0	Cl ⁻ H ₂	O Lin		
	0	0.043	3.881	0.000
	Н	-0.116	2.902	0.000
	тт	1 007	2 0 2 0	0.000
	Η	1.007	3.920	0.000

Cl	0.128	0.728	0.000
Ar	-0.181	-3.497	0.000

Br⁻H₂O

0	0.017	2.588	0.000
Н	0.193	1.623	0.000
Н	-0.941	2.590	0.000
Br	0.017	-0.712	0.000

Ar.Br⁻H₂O Perp

0	-0.876	1.245	-1.775
Н	-0.302	0.490	-1.495
Н	-0.628	1.929	-1.141
Ar	-0.371	-3.985	-3.847
Br	1.264	-0.931	-0.406
Ar.Br ⁻ H ₂	O Out		
Ο	0.182	1.036	-2.418
Н	0.475	0.430	-1.695
Н	-0.519	1.539	-1.986
Ar	-2.795	-3.612	-1.406
Br	0.733	-0.741	0.361

Reference

- P. Ayotte, J. A. Kelley, S. B. Nielsen and M. A. Johnson, *Chem. Phys. Lett.*, 2000, 316, 455–459.
- 2 S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli and M. A. Johnson, *J. Phys. Chem. A*, 2010, **114**, 1556–1568.