Supplementary Information

Controlling Radiolysis Chemistry on the Nanoscale in Liquid Cell Scanning Transmission Electron Microscopy

Juhan Lee, Daniel Nicholls, Nigel D. Browning, and B. Layla Mehdi

b.l.mehdi@liverpool.ac.uk

1 Department of Mechanical, Materials and Aerospace Engineering and Department of Physics, University of Liverpool, Liverpool, L69 3GH

2 Sivananthan Laboratories, 590 Territorial Drive, Bolingbrook, IL 60440. USA

3 Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Figures

Figure S1: Concentration profiles of H_2O_2, H_2, H_2, and O_2 obtained 1.1 μs after the beam irradiation with the size of 1 μm in radius for the dose rate of 1 e/$\text{Å}^2\text{s}$.

Figure S2: Three concentration profiles at the dose rate of 50 e/$\text{Å}^2\text{s}$ at different irradiation times corresponding to the stabilised, confined, and transition regimes.
Figure S3: (A) Schematic illustration of the beam-overlapping simulation with a slab symmetry. (B) Maximum H₂ concentration as a function of probe separation distance with the dwell time of 0.5 and 2 μs.
Figure S4: Concentration profiles at the dose rate of 50 e/Å²s for various area ratios.