Supplementary Information

Kinetic fall-off behavior for the Cl + Furan-2,5-dione (C₄H₂O₃, maleic anhydride) reaction

Aparajeo Chattopadhyay,^{1,2} Tomasz Gierczak,^{1,2} Paul Marshall,^{1,2,3} Vassileios C. Papadimitriou,^{1,2} and James B. Burkholder^{1,*}

- ¹ Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO, USA 80305-3327
- ² Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA 80309

³ Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, USA.

*Correspondence

James B. Burkholder Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, CO 80305-3327 Ph: 303-497-3252 Email: James.B.Burkholder@noaa.gov

Present address

Tomasz Gierczak, Department of Chemistry, Warsaw University, al. Zwirki i Wigury 101, 02-089 Warszawa, Poland

Vassileios C. Papadimitriou, Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece.

Temperature	Pressure	$[C_4H_2O_3]$	Q	-λ1	-λ2	S ₀	<i>k</i> _d	kloss	$k_{ m f}$	kr	Kp
(K)	(Torr,	(10 ¹⁴					(s ⁻¹)	(s ⁻¹)	(10^{-11} cm^3)	(s ⁻¹)	(10 ⁶
	N ₂)	molecule							molecule ⁻		atm ⁻¹)
323	200	1 10	2813.9	5068.8	95.5	2016.5	15	190	2 12	2624	0.184
020	200	3.27	3083.9	10240.9	122.1	1919.9	10	166	2.22	2918	0.173
		1.77	3205.1	7293.5	107.3	1989.6		176	2.36	3029	0.178
		2.40	3093.9	8123.3	107.9	1934.6		161	2.15	2879	0.170
	100	3.51	2667.1	8989.4	130.9	1125.1	118	136	1.80	2531	0.162
		2.37	2642.3	/491.9 6170.0	138.2	1285.9		148	2.06	2494	0.188
		1.74	2311.5	4785.3	141.8	1230.2		162	1.90	2434	0.194
		0.98	2420.1	4493.1	140.3	1315.0		164	2.14	2256	0.216
	50	5.39	2195.5	9862.3	107.0	1322.0	80	114	1.43	2081	0.156
		3.43	2112.4	7305.0	104.0	1458.0		113	1.52	1999	0.173
		3.09	2085.8	6529.5	103.7	1458.1		114	1.44	1972	0.166
		2.02	2008.6	4848.9	105.8	1505.4		123	1.42	1885	0.171
		1.27	1980.7	3893.9	102.5	1037.4		125	1.52	1802	0.180
	50	2.51	2005.8	5331.4	91.0	1383.5	51	114	1.34	1892	0.161
		1.15	1938.1	3565.2	83.9	1647.1		121	1.44	1818	0.181
		4.02	1924.4	7042.1	91.2	1323.5		106	1.28	1819	0.161
		1.86	2032.2	4869.7	90.4	1705.3		117	1.54	1915	0.183
		0.99	2083.7	3530.8	85.9	1829.5		133	1.49	1951	0.174
	25	7.72	1(72.0	102547	120.1	1015.0	170	122	1.12	1541	0.165
	25	1.12	16/3.8	10354.7	138.1	1015.8	170	132	1.12	1541	0.165
		4.71	1770.3	7486.7	154.9	1295.8		151	1.21	1620	0.170
		3.42	1731.8	5821.3	150.9	1292.2		144	1.19	1588	0.170
		2.50	1633.0	4418.4	157.0	1397.0		150	1.11	1483	0.170
	15	10.99	1393.4	11509.0	148.2	980.4	250	136	0.911	1257	0.165
		10.63	1329.8	9980.3	174.5	1077.2		164	0.807	1165	0.157
		9.32	1403.0	94/8.0	231.7	1640.8		182	0.858	1235	0.158
		2.47	1555.5	3322.2	203.7	1040.8		162	10.007	(1131) (23 K) = 0	17 ± 0.01
308	500	2.24	2515.0	7623.8	1251.2	2069.4	250	1458	2.73	1057	0.617
		1.83	2502.8	6695.0	1159.8	1998.6		1399	2.79	1103	0.602
		1.30	2392.5	5213.3	1020.9	2168.8		1315	2.76	1077	0.611
	200	0.10	1.105.0	5 40 4 4	105.0	2015.2		212	0.50	1100	0.505
	200	2.42	1405.3	(520.0	187.8	2047.3	66	212	2.53	1193	0.505
		2.14	1341.2	5057.5	191.9	2061.9		219	2.49	1122	0.528
		1.40	1326.8	4337.7	182.3	2088.4		225	2.56	1102	0.554
		0.64	1324.4	3090.3	195.7	2118.9		273	2.95	1051	0.669
	100	4.64	1152.2	11736.6	125.6	1103.8	96	128	2.28	1024	0.532
		3.84	1197.0	9458.5	131.0	1142.8		136	2.16	1062	0.485
		2.90	1067.3	69/8.3	124.4	1164.2		129	2.05	938	0.521
		2.09	1073.0	3505.6	120.0	1201.0		132	2.30	046	0.532
		1.05	10/3.7	5505.0	110.0	1333.1		120	2.34	240	0.307
	50	3.56	875.0	7168.9	115.0	1490.5	59	122	1.78	753	0.565
		2.62	869.5	5559.1	115.9	1695.7		125	1.81	745	0.579
		2.30	910.8	4886.7	116.8	1627.1		128	1.76	783	0.535
		2.06	934.9	4420.1	127.5	1754.9		143	1.72	792	0.520
		1.44	848.8	3333.8	112.2	1841.5		128	1.76	721	0.582
		0.948	049.3	2439.0	107.7	1/80.2		150	1./3	/20	0.579
	25	3.69	760.7	5872.9	185.7	1496.0	84	197	1.41	564	0.597
	-	2.90	706.0	4640.3	151.4	1508.0		161	1.38	545	0.604

Table S1. Summary of experimental conditions, fit parameters, and kinetic results obtained in this work for the Cl + $C_4H_2O_3$ (MA) $\leftrightarrow C_4H_2O_3Cl^{\bullet}$ (adduct) reaction with N₂ bath gas

		2 20	783.3	4010.2	174.6	1603.8		101	1 45	502	0.584
		2.29	763.5	4010.2	1/4.0	1093.8		191	1.45	592	0.384
		1.60	708.5	28/6.6	148.2	1657.4		164	1.39	544	0.610
		0.756	702.1	1761.4	141.2	1667.1		170	1.48	532	0.661
	15	8.80	782.1	10018.0	307.2	2093.9	126	316	1.07	466	0.548
		6 56	845.2	8047 7	342.8	2166.8		358	1 13	488	0.553
		5.92	806.6	7221.9	282.2	22100.0		402	1.13	404	0.535
		3.83	890.0	/221.0	362.2	2317.4		402	1.13	494	0.343
		4.04	730.5	4844.6	300.2	2485.1		318	1.06	413	0.613
		2.40	802.0	3456.0	302.2	2587.2		333	1.18	469	0.600
		1.93	714.4	2646.5	287.3	2652.0		320	1.08	394	0.657
								G	lobal fit: $K_{\rm p}$	308 K = 0	$.57 \pm 0.02$
296	500	1 36	1295 7	4901.1	674.4	2515.4	16	770	3 14	525	1 48
270	500	2.02	260.6	0425.2	62.9	2513.4	10	770	2.07	429	1.40
		3.02	300.0	9423.3	-03.8	2304.7		-	2.97	420	1.72
		0.96	1134.4	3510.5	588.2	2900.5		694	3.07	440	1.73
		3.42	2177.5	10515.0	1592.6	2504.7		1686	2.90	492	1.46
		2.42	678.6	7863.4	181.1	2843.8		192	3.03	486	1.55
		1.88	510.1	110.5	6097.9	2644.5		-	3.02	-	-
	200	5 37	-13 77	15298.0	-465.6	3150.4	16	_	2.76	467	1 47
	200	2.45	-13.77	10202.0	-405.0	2249.5	10	(22	2.70	407	1.47
		5.45	1288	10502.0	391.1	3548.5		033	2.78	033	1.05
		1.68	681.7	5052.5	185.3	3547.0	ļ	204	2.70	478	1.40
		2.66	700.0	7425.6	182.9	3555.3		196	2.59	505	1.27
	100	1.00	554.1	2891.7	126.7	3937.2	30	144	2.42	411	1.47
		2 16	564.6	5672.2	135.9	3733 1		145	2 42	420	1 43
		4.74	1227.1	11727.0	861.0	2462.0		806	2.42	420	1.45
		4.74	1327.1	0716.4	1452.5	3402.9		090	2.37	431	1.37
		3.68	2219.9	9/16.4	1452.5	3556.1		-	2.42	-	-
		6.58	-905.1	16505.0	-1156.8	3272.7		-	2.47	-	-
	100	4.11	1071.8	10447.0	472.0	3621.8	78	496	2.38	576	1.02
		2.31	671.41	6034.5	197.1	3953.9		207	2.37	464	1.27
		1.05	611.00	2064.9	166.0	2067.0		182	2.01	420	1.20
		1.03	011.99	5004.8	7001.7	3907.0		102	2.41	430	1.39
		3.27	8/0.93	500.3	/891./	3443.6		521	2.27	350	1.61
		2.58	677.36	6987.9	179.7	3163.4		188	2.49	490	1.26
		5.62	6984.5	13730.0	6440.8	3459.5		-	2.33	-	-
		4.71	3191	11752.0	2434.8	3448.3		-	2.32	-	-
	50	1 3 3	456.2	3062.6	02.8	2827.7	33	101	2.00	355	1.40
	50	2.0	200.47	26.0	5(04.5	2627.7	55	101	2.00	220	1.50
		2.60	300.47	-26.0	5604.5	2624.0		-	2.02	330	1.52
		2.00	300.5	4342.0	77.4	2499.3		81	1.98	335	1.47
		0.92	444.3	2268.5	96.3	2701.7		108	2.05	336	1.52
	25	2.20	448.23	3733.9	157.1	3417.7	43	167	1.55	281	1.36
		0.85	425.9	1585.1	152.9	3557.4		177	1 50	249	1 49
		3 34	876.53	5364.3	561.73	3037.2		504	1.50	282	1 3 2
		4.25	1157	5504.5	1242.0	2772.0		394	1.30	202	1.32
		4.23	-113/	0404.3	-1243.9	2113.9		-	1.49	-	-
										_	
	15	1.60	494.9	2436.4	237.8	3904.2	61	259	1.32	236	1.39
		2.57	668.5	3792.0	369.7	3658.5		396	1.34	272	1.22
		3.56	-474.7	4385.0	585.3	3434.8		-	1.18	-	-
		5.39	409	6637.7	264.7	2809.2	1	-	1.19	-	-
	•						•		lobal fit: K. ((296 K) = 1	41 + 0.06
202	500	2.00	2552 4	11276.0	2001.7	1667.0	12	2222.2	2 45	221	202
285	300	2.99	3333.4	115/0.0	5091.7	1007.0	12	3222.2	5.05	331	2.80
		2.04	2143.4	/160.7	18/9.4	1/33.5		1951	3.38	192	4.56
		1.61	2091.3	1803.2	5699.1	1780.8		1898.8	3.35	193	4.52
	200	1.27	389.9	4082.9	212.8	2696.7	6	222	3.07	168	4.76
		0.55	311.8	1901.4	1373	2555.5	-	151	3 13	161	5.04
L		1.96	13/12 2	6006.5	3869.0	2772.0		/105	3.02	1/10	5 20
ļ		1.00	4342.3	10041.0	3608.9	2113.9	<u> </u>	4193	3.02	140	3.30
		3.22	3995.8	10841.0	3621.1	2654.7		5751	3.24	245	3.43
		2.63	3657.3	3654.3	7958.6	2535.7		-	3.02	-	-
	100	0.83	261.5	2422.0	116.7	3053	15	123	2.72	138	4.87
		1.52	2052.4	4239.0	1780.6	3138.6	-	1902	2.61	150	4.30
	1	1.02	740 7	3502.1	560.0	31/11 5	1	507	2.01	144	1.50
		1.22	/40./	5572.1	309.0	2152.0		37/	2.19	144	4.02
		2.01	3005.7	60/2.9	2568.6	3153.9		2/6/	2.80	239	2.91

	3.30	-16588	9164.8	-16589	2927.6		-	2.77	-	-
50	0.65	459.4	1805.4	280.0	1772.2	26	308	2.45	151	4.03
	1.70	767.4	521.3	4380.3	1649.6		551	2.41	216	2.76
	1.20	497.1	3082.7	305.2	1740.7		324	2.38	173	3.41
	2.04	2917.5	2779.4	4874.2	1705.7		-	2.31	-	-
	3.06	1200.8	8081.5	811.7	1641.3		-	2.51	-	-
25	0.82	736.5	1985.4	499.6	2082.9	34	564	2.08	173	3.13
	0.48	283.5	1152.8	164.3	2317.3		180	2.06	104	5.17
	1.16	1054.9	2678.2	778.8	2173.9		866	2.04	189	2.80
	2.56	1663.3	1219.4	5882.2	2001.3		-	2.11	-	-
	1.86	2828	4740.1	2042.3	2113.4		-	2.11	-	-
	3.96	3810.9	4957.4	6121.0	1923		-	1.83	-	-
15	1.20	971.8	2127.6	799.2	3276	42	2883.9	1.59	104.2	3.97
	0.75	236.9	1276.7	172.1	3389.9		179.4	1.56	57.6	7.05
	1.48	1319.3	2602.2	1106.0	3288.2		1202.7	1.58	116.6	3.52
	1.81	6326.1	6431.2	2674.0	3264.4		-	1.52	-	-
	2.38	4916.7	5424.7	3349.1	3073.4		-	1.60	-	-
							G	lobal fit: K_p (2)	283 K) = 4	$.16 \pm 0.49$

Temperature	Pressure	$[C_4H_2O_3]$	Q	-λ1	-λ2	S ₀	k _d	kLoss	kf	kr	Kp
(K)	(Torr,	(10 ¹⁴	-				(s^{-1})	(s ⁻¹)	(10^{-11} cm^3)	(s ⁻¹)	(10^6 atm^{-1})
	He)	molecule							molecule		
		cm ⁻³)							¹ s ⁻¹)		
323	300	3.58	3024.5	10050.7	149.0	3381.6	59	185	1.99	2839	0.159
		3.18	2964.6	8989.2	154.9	3559.3		199	1.92	2765	0.158
		2.55	2894.1	/65/.9	146.8	3518.1		196	1.90	2698	0.160
		2.01	2827.0	6668.3 5051.2	133.9	2938.5		186	1.95	2641	0.168
		1.27	2/30.1	3031.5	134.5	3044.4		210	1.89	2322	0.170
	100	3 63	1801 4	6614.6	85.7	3546.6	48	100	1 31	1701	0.166
	100	3.23	1920.3	6095.1	84.5	3466.5	-10	100	1.30	1820	0.163
		2.56	1856.4	5012.3	83.9	3312.1		100	1.25	1752	0.162
		1.97	1885.2	4462.9	83.6	3470.0		108	1.32	1777	0.169
		0.91	1841.0	3016.2	78.8	4293.9		124	1.33	1717	0.176
									Global fit:	K _p (323 K	$) = 0.17 \pm 0.01$
308	100	5.81	870.8	10003.0	110.9	4087.8	120	110.2	1.57	760.7	0.492
		5.49	860.3	9375.4	125.4	4136.5		125.8	1.55	734.4	0.504
		4.22	849.5	7311.9	120.2	4810.7		120.2	1.53	729.3	0.501
		3.04	835.6	5883.4	127.9	4977.6		129.0	1.66	706.6	0.562
		2.40	830.1	4792.6	117.8	4732.0		117.3	1.65	712.8	0.552
		1.13	815.8	2680.3	115.3	4971.3		113.5	1.65	702.2	0.559
									Global fit:	K _p (308 K	$) = 0.53 \pm 0.03$
296	500	2.49	2101.2	7617.5	1473.8	1328.6	124	1597	2.76	504	1.36
		2.15	720.0	6823.9	222.5	17/6.7		230	2.89	490	1.46
		1.75	792.3	5843.7	240.3	2043.6		253	2.96	540	1.36
		1.33	704.2	4582.9	264.2	1693.9		282	2.96	493	1.49
		0.97	/04.3	3330.0	205.4	1/00.8		220	2.79	484	1.40
	300	5.83	614.9	1946 3	150.0	3725 7	37	198	2 49	416	1.48
	500	3.64	645.0	9486.8	184 7	4153.3	57	192	2.47	453	1.40
		3.16	665.7	8261.1	178.7	3882.5		188	2.45	478	1.27
		2.45	648.6	6548.2	178.5	4223.2		190	2.46	459	1.33
		2.20	624.0	5741.6	167.6	3720.3		179	2.38	445	1.33
		1.69	616.7	4624.2	174.1	3360.0		189	2.45	428	1.42
		0.95	604.1	2780.8	163.1	3390.2		187	2.42	417	1.44
	100	9.12	310.7	15617.8	45.7	5538.2	106	45	1.67	266	1.56
		6.88	392.2	12001.5	80.4	7102.7		80	1.68	312	1.34
		4.91	432.2	8773.2	119.0	7737.3		120	1.70	312	1.35
		3.36	417.3	6276.2	112.7	9118.3		113	1.74	304	1.42
		1.66	390.4	3453.9	87.2	9518.9		85	1.83	305	1.49
		0.97	419.6	2126.3	112.0	8322.6		113	1.76	306	1.42
	100	1 12	156.2	7022.5	122.4	2845 2	60	126	1 70	320	1.27
	100	4.43	430.2	6127.7	90.3	2043.3	09	02	1.70	350	1.27
		3.10	436.1	5535.8	120.0	2002.2		124	1.61	312	1.20
		2.04	418.8	4010.4	76.5	2080.2		77	1.76	342	1.28
		1.03	401.1	2219.0	82.2	2147.4		84	1.77	317	1.39
		0.95	422.5	1903.9	121.9	3275.2		132	1.62	290	1.38
	100	3.03	448.9	5480.0	151.8	2494.2	80	156	1.68	293	1.43
		2.11	466.2	4164.9	145.4	2673.2		151	1.78	315	1.40
		3.03	448.9	5480.0	151.9	2494.2		156	1.68	293	1.43
		1.24	473.3	2596.4	146.8	2908.0		157	1.77	317	1.39
	50	3.94	369.5	5637.7	98.2	1914.0	63	100	1.35	270	1.24
		3.63	369.7	5078.5	91.8	1857.6		94	1.30	276	1.17
		2.93	322.6	3967.3	101.6	2089.3		104	1.26	219	1.42
		2.73	342.9	3858.8	86.5	1816.2		88	1.30	255	1.26
		1.67	333.9	2524.3	87.1	1782.9		90	1.33	244 K (200 W	1.34
									Global fit:	Kp(296 K	$j = 1.3 / \pm 0.03$

Table S2. Summary of experimental conditions, fit parameters, and kinetic results obtained in this work for the Cl + $C_4H_2O_3$ (MA) $\leftrightarrow C_4H_2O_3Cl$ • (adduct) reaction with He bath gas

Table S3. Computed CBS-QB3 enthalpies at 298 K (in au) and B3LYP/6-311G(2d,d,p) geometries (atomic number and Cartesian coordinates in 10^{-10} m) for Cl, C₄H₂O₃ (MA) and C₄H₂O₃•Cl (adduct).

For C₄H₂O₃ (MA), the rotational constants are B = 6.86, 2.46 and 1.81 GHz. For C₄H₂O₃•Cl (adduct), the rotational constants are B = 2.80, 1.44 and 1.04 GHz.

Cl atom

CBS-QB3 Enthalpy= -459.681232

Maleic anhydride

CBS-Q	B3 Enthalpy =	-378.780589	
6	0.000000000	1.131875000	0.159628000
6	0.000000000	0.665536000	-1.256735000
6	0.000000000	-0.665536000	-1.256735000
6	0.000000000	-1.131875000	0.159628000
8	0.000000000	0.000000000	0.971021000
8	0.000000000	-2.238041000	0.598153000
8	0.000000000	2.238041000	0.598153000
1	0.000000000	1.356406000	-2.086671000
1	0.000000000	-1.356406000	-2.086671000

Cl adduct

CBS-Q	B3 Enthalpy =	-838.491388	
6	-1.618170000	-0.386090000	-0.038391000
6	-0.525931000	-1.077731000	0.616960000
6	0.638620000	-0.188314000	0.687514000
6	0.097264000	1.138565000	0.124657000
8	-1.193034000	0.932542000	-0.310253000
8	0.648259000	2.186547000	0.063652000
8	-2.715952000	-0.762210000	-0.325777000
1	-0.580051000	-2.105350000	0.942027000
1	1.084920000	-0.051442000	1.671889000
17	2.001780000	-0.800989000	-0.375255000

Maleic	Cl - MA
anhydride	adduct
165	63
258	147
400	191
554	305
630	394
639	525
692	562
768	586
853	605
862	700
892	724
975	789
1036	846
1065	910
1246	1009
1314	1051
1637	1175
1836	1220
1896	1276
3200	1304
3221	1762
	1896
	3075
	3218

Table S4. Computed B3LYP/6-311G(2d,d,p) vibrational frequencies for $C_4H_2O_3$ (MA) and $C_4H_2O_3Cl^{\bullet}$ (Cl adduct), in cm⁻¹ and scaled by 0.99.

Figure S1. Representative Cl atom temporal profiles obtained for a range of $C_4H_2O_3$ (MA) concentrations at 283 K and 100 Torr (N₂). MA concentrations from top to bottom are (10^{14} molecule cm⁻³): 0, 0.37, 0.83, 1.22, and 2.01. The lines for profiles with MA present are non-linear least-squares fits of the data to eq. I. Fit results are given in **Table S1**.

Figure S2. Representative Cl atom temporal profiles obtained for a range of $C_4H_2O_3$ (MA) concentrations at 308 K and 50 Torr (N₂). MA concentrations from top to bottom are (10^{14} molecule cm⁻³): 0, 0.57, 1.44, and 3.56. The lines for profiles with MA present are non-linear least-squares fits of the data to eq. I. Fit results are given in **Table S1**.

Figure S3. Representative Cl atom temporal profiles obtained for a range of $C_4H_2O_3$ (MA) concentrations at 323 K and 50 Torr (N₂). MA concentrations from top to bottom are (10¹⁴ molecule cm⁻³): 0, 0.67, 1.86, 2.51 and 4.02. The lines for profiles with MA present are non-linear least-squares fits of the data to eq. I. Fit results are given in **Table S1**.

Figure S4. Fall-off data for the $Cl + C_4H_2O_3$ (MA) + M (He) reaction. Lines are a least-squares fit of the data (see **Table S2**) using the rate coefficient parameters for N₂ data after incorporating a collision efficiency ratio of 0.34.

Figure S5. A representative measurement of the dark loss of $C_4H_2O_3$ (MA) in the relative rate apparatus, i.e., in the absence of Cl atom. The line is an empirical second-order polynomial least-squares fit of the data used to correct for MA loss in the relative rate kinetic measurement, e.g. see Figure 3 in the text for the magnitude of the dark loss correction. MA loss measurements performed before and after each kinetic measurement were consistent to within 3%.

Figure S6. Representative Cl atom temporal profiles obtained for a range of O₂ concentrations with a C₄H₂O₃ (MA) concentration of $(6.22 \pm 0.10) \times 10^{13}$ molecule cm⁻³ at 296 K and 40 Torr (N₂). O₂ concentrations from top to bottom profile are (10¹⁴ molecule cm⁻³): 0, 1.27, and 4.03. The lines are non-linear least-squares fits of the data to eq. I. Not all measured Cl atom profiles are shown for clarity, see **Figure 6**.

Figure S7. Infrared spectra of reaction products formed in the $Cl + C_4H_2O_3$ reaction. Experiments were performed at 296 K with 630 Torr syn. Air bath gas. Panel A is the initial MA spectrum. Note the high initial MA concentration resulted in saturated absorbance at 1805 cm⁻¹. Panel B is the spectrum recorded after ~3 mins of reaction with MA subtracted, ~90% MA loss.