Supporting information for

Redox reactions between acetonitrile and nitrogen dioxide in interlayer space of fluorinated graphite matrices

D. V. Pinakov,^a V. G. Makotchenko,^a G. I. Semushkina,^a G. N. Chekhova,^a I. P. Prosvirin,^b
I. P. Asanov,^a Yu. V. Fedoseeva,^a A. A. Makarova,^c Yu. V. Shubin,^a A. V. Okotrub^a
and L. G. Bulusheva^{1a}

^aNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia

^bBoreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia ^cPhysikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany

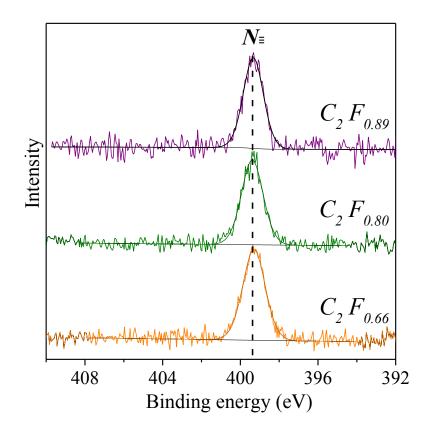


Fig. S1. XPS N 1s-spectra of fluorinated graphite intercalation compounds (FGICs) based on various C_2F_x matrices with acetonitrile.

¹Corresponding author e-mail: bul@niic.nsc.ru

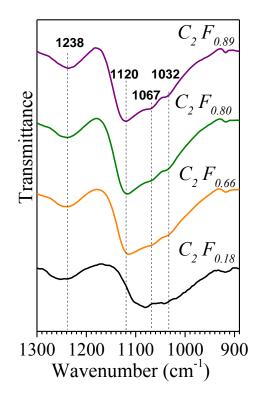


Fig. S2. C–F vibration region of IR-spectra of FGICs based on various C_2F_x matrices with acetonitrile. Bold numbers from lowest to highest identify frequencies of the stretching vibrations for isolated CF groups and CF groups with two, one, and no bare carbon neighbors, respectively.

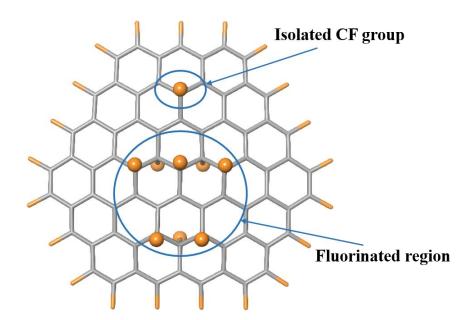


Fig. S3. Model of partially fluorinated graphene layer with isolated CF group and fluorinated region of zigzag CF chains separated by bare carbon atoms. The fragment edges are terminated by fluorine atoms.

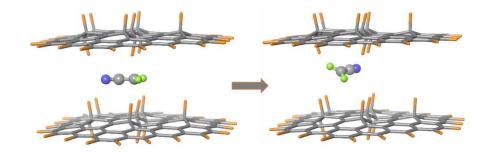


Fig. S4. Model of partially fluorinated graphene bilayer intercalated with CH_2CN . Left – starting position of CH_2CN between fluorinated regions of the layers. Right – the structure of model optimized at B3LYP/6-31G. CH₂CN rotated and located over sp²-hybridized carbon chains in the gallery of fluorinated graphene bilayer.