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Structural properties

Alfa Aesar product specification certifies the existence of a small amount of oxide, Ga2O3, in the 
commercial powders of Ga2S3. At room conditions, Ga2O3 exhibits a monoclinic β phase (S.G. 
C2/m, No 12). By means of Le Bail refinements, we have succeeded in indexing α’-Ga2S3 together 

with β-Ga2O3 in our XRD pattern at 0.1 GPa, as depicted in Fig. S1. Those peaks coming from the 
β-Ga2O3 are located at around 8.20, 8.30, 9.10, 9.50, 10.13 and 12.30 degrees. It is worthy to 
stress the high intensity of the diffraction peaks from β-Ga2O3 at 8.20, 8.30 and 9.50 degrees. 
The high structure factor values of these peaks explain these high intensities, even at the very 
low concentration in our commercial powders of Ga2S3. 

According the Lai et al.’s patterns,1 they found peaks associated with the impurity, concretely, 
at 0.39 Å-1 in Run-1 (0.0001 GPa, Fig. 1 of Ref. 1) and additionally other peak at 0.3 Å-1 in Run-2 
(0.1 GPa, Fig. 2 of Ref. 1). Since the limited number of peaks, they could not identify such an 
impurity. In our HP-XRD conditions, these peaks must be located at 7.30 and 9.5 degrees. That 
peak observed at 9.5 degrees corresponds with the most intense peak observed of β-Ga2O3 in 
our measurement at 0.1 GPa (Fig. S1). However, we have not observed the peak at 7.30 degrees. 
Therefore, this must correspond to other impurity different from β-Ga2O3. To avoid confusion, 
henceforth we will refer to the β-Ga2O3 as the only impurity in our work. 
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Figure S1. Experimental powder XRD pattern (open circles) of α’-Ga2S3 measured at 0.1 GPa. Le 
Bail refinement (red line) with the used background (green line) and residuals (black line) are 
also shown. Tick marks correspond to α’-Ga2S3, β-Ga2O3 and Cu reflections, respectively. 
Asterisks indicate those diffraction peaks observed from the β-Ga2O3.



Figure S2. Normalized stress, FE, vs finite strain, fE, for a) our experimental data and b) 
experimental data from run-2 in Ref. 1, c) our GGA-PBEsol calculations and d) LDA calculations 

from Ref. 1 for the α’ phase. Horizontal dash lines serve as a reference of  = 4.𝐵 '
𝑜



Figure S3. Pressure dependence of the relative volumes in α’-Ga2S3 corresponding to the unit-
cell and to the Ga1S4 and Ga2S4 tetrahedra.



Figure S4. Pressure dependence of the a) ECoN and distortion index and b) bond angle variance 
and quadratic elongation in Ga1S4 and Ga2S4 polyhedra. Inset on b) depicts the Ga2 atom out 
the centroid of the Ga2S4 tetrahedra at 14 GPa. 



Figs. S5, S6 and S7 show the relative change of the free theoretical atomic coordinates (x,y,z) of 
the unequivalent Ga and S atoms at HP. In general, it can be inferred that S atoms move more 
than Ga atoms at HP. However, we must highlight the particular features observed in each 
figure. As Fig. S5 a) shows, S1 and S2 atoms displace along the positive a axis while S3 atoms 
move in the opposite direction (Fig. S5 b)). Moreover, the change of the atomic parameters of 
the S3 atom is considerably larger than those of S1 and S2 atoms. These movements lead to the 
closing of the channels (see Fig. S8 c)). Concerning the Ga atoms, below ~4 GPa, Ga1 and Ga2 
atoms move along the positive and negative a axis, respectively, which also leads to the closure 
of the channels (Fig. S8 a)). Above that pressure, Ga1 and Ga2 atoms start to move in the 
opposite direction as if there was some kind of repulsion along the a axis (Fig. S5 a)). Along the 
positive b axis, S atoms again move in a more pronounced way than Ga atoms (Fig. S6). Again 
around 4 GPa, Ga2 atoms change the movement direction from the positive to the negative b 
axis as if there were a repulsive effect above that pressure. 

Figure S8 shows the displacement of S and Ga atoms in the a-b plane. Below ~4 GPa, Ga atoms 
move approximately symmetrically along the b axis (Fig. S8 a)). Above ~4 GPa they also move in 
a similar trend, where the axis of symmetry is now at around 60 degrees, measured to the b axis, 
from a to b (Fig. S8 b)). More surprising is how S and Ga atoms move along the z axis; i.e. along 
the direction normal to the a-b plane (Fig. S7). S1 and Ga1 atoms displace along the positive z 
cartesian axis, while S2 atoms move slightly in the opposite direction (Fig. S7 a)). In contrast, S3 
atoms move along the positive z axis up to around 2 GPa and in the negative direction above 
that pressure. The most striking feature is that the relative z coordinate of the Ga2 atoms 
steadily decreases to 0 above 16 GPa (see Fig. S7 b)); i.e. it points to a symmetrisation of the 
structure that ends in the phase transition that has been observed above this pressure (see Fig. 
2).  

Figure S9 shows the displacements along the z cartesian axis of the S and Ga atoms. We have 
remarked that Ga1 and Ga2 atoms move in the opposite direction (Fig. S9 a)), bearing in mind 
that atom Ga2 changes its z coordinate much faster than atom Ga1, as already commented. 
Figure S9 b) and Figure S9 c) emphasize the change in the direction of movement of the S3 atom 
below and above 2 GPa, respectively. Therefore, the analysis of the atomic movements at HP 
shows a tendence of the monoclinic structure to a symmetrisation at HP.



Figure S5. Relative change of the theoretical x atomic coordinate of independent a) S1, S2, Ga1 
and Ga2 atoms and b) S3 atoms of the α’ phase on increasing pressure.



Figure S6. Relative change of the theoretical y atomic coordinate of all the independent atoms 
of the α’ phase on increasing pressure. 



Figure S7. Relative change of the theoretical z atomic coordinate of independent a) S1, S2, S3 
and Ga1 atoms and b) Ga2 atoms of the α’ phase on increasing pressure.



Figure S8. Schemes of the Ga2S3 structure around the vacancy. Arrows of each atom indicate the 
directions x and y of displacement of Ga atoms before a) and after 4 GPa b), and S atoms c) with 
increasing pressure. Dashed lines indicate the axis of symmetry about which the movement of 
Ga atoms is symmetrical. This axis is a) paralel to the b axis before 4 GPa and b) at around 60 
degrees (measured to the b axis, from a to b) after 4 GPa.



Figure S9. Schemes of α’-Ga2S3 around the vacancy. Arrows of each atom indicate the direction 
z of displacement of Ga atoms a) and S atoms b) before and c) after 2 GPa.



Vibrational properties

Figure S10. Scheme of the atomic vibrations of the A’(1) mode of α’-Ga2S3 around 74 cm-1. This 
mode is a shear layer-like mode with all Ga and S atoms almost in the same plane of the wurtzite 
lattice vibrating out-of-phase with respect to all atoms of neighbour planes. It can be considered 
as a translation of the GaS4 unit, despite it is a translation of the GaS3 unit. Vibrations are 
observed thanks to software J-ICE.2

Figure S11. Scheme of the atomic vibrations of the A’’(1)  mode of α’-Ga2S3 around 82 cm-1. This 
mode is also a shear layer-like mode with all Ga and S atoms almost in the same plane of the 
wurtzite lattice vibrating out-of-phase with respect to all atoms of neighbour planes. It can be 
considered as a translation of the GaS4 unit, despite it is a translation of the GaS3 unit. Note that 
this mode and the previous one are the two non-degenerate shear modes of typical shear E rigid 
modes of layered materials; i.e. atoms in both modes vibrate in perpendicular directions.



Figure S12. Scheme of the atomic vibrations of the A’(2) mode of α’-Ga2S3 around 87 cm-1. This 
mode is mainly characterized by a strong movement of the S1 atom almost in perpendicular 
direction to the atomic planes of the wurtzite lattice. It also shows Ga1 atoms moving in opposite 

direction with respect to S3 atoms.

Figure S13. Scheme of the atomic vibrations of the A’’(2) mode of α’-Ga2S3 around 100 cm-1. This 
mode is a kind of compressional layer-like mode with all Ga and S atoms almost in the same 
plane of the wurtzite lattice vibrating out-of-phase with respect to all atoms of neighbour planes. 

S3

Ga1



Figure S14. Scheme of the atomic vibrations of the A’(5)  mode of α’-Ga2S3 around 147 cm-1. This 
mode is a pure 4 bending mode of GaS4 tetrahedra characterized by concerted movements of 
Ga and specially S3 atoms (that vibrate out-of-phase with respect to those of the neighbor 
layers). 

Figure S15. Scheme of the atomic vibrations of the A’(6) mode. The strongest Raman mode of 
α’-Ga2S3 around 234.6 cm-1. This mode is a mixture of bending modes leaded by displacements 
of S1, S2 and S3 atoms. The concerted displacement of S atoms leads considerable symmetric 
stretching of S atoms around the vacancy and to a small symmetric Ga-S stretching 1 mode of 
the GaS4 unit. This is why this mode is known also as the breathing mode of the vacancy. Note 
and S3 atom moves in the direction of the bisector of both cation vacancies around it (upward 
right in the figure), S2 atom vibrates against its neighbour vacancy (downward left in the figure), 

and S1 atom vibrates against its neighbour vacancy (downward front in the figure). 
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Figure S16. Scheme of the atomic vibrations of the A’(12) mode. The second strongest Raman 
mode of α’-Ga2S3 around 387 cm-1 is an asymmetric Ga-S stretching 3 vibration characterized 
mainly by S3 atomic vibrations (moving in-phase in the different layers) in the direction of the 
bisector of both cation vacancies around it (upward right in the figure), while Ga1 atoms (also 
moving in-phase in the different layers), but in opposite phase with respect to S3 atoms 
(downward left in the figure). 

Figure S17. Scheme of the atomic vibrations of the A’’(13) mode. This mode of α’-Ga2S3 around 
392 cm-1 is an asymmetric Ga-S stretching 3 vibration characterized mainly by S3 atoms 
vibrations (moving out-of-phase in the different layers) in the direction of the bisector of both 
cation vacancies around it (upward right in the figure), while Ga1 atoms (also moving out-of-
phase in the different layers), but in opposite phase with respect to S3 atoms (downward left in 
the figure).



Figure S18. Scheme of the vibration of the A’’(14) mode of α’-Ga2S3 around 407 cm-1. This mode 
is an asymmetric Ga-S stretching 3 vibration characterized mainly by an in-phase movement of 
all S3 atoms in the direction of the two Ga atoms linking the S3 atom. View along the direction 
perpendicular to the wurtzite-like layers.

Figure S19. Scheme of the vibration of the A’(13) mode of α’-Ga2S3 around 425 cm-1. This mode 
is an asymmetric Ga-S stretching 3 vibration characterized mainly by an out-of-phase 
movement of the closest S3 atoms in the direction of the two Ga atoms linking the S3 atom. 
View along the direction perpendicular to the wurtzite-like layers.



Figure S20. Theoretical one-phonon density of states of α’-Ga2S3 at 0 GPa. The total as well as 
the partial contribution of Ga and S atoms to the different vibrations is plotted. The individual 
contribution of the S atoms is also plotted in order to show the different contributions of S1, S1 
and S3 atoms. Individual contribution of the Ga atoms is not plotted since both Ga1 and Ga2 
atoms show similar contributions in all the regions.  



Figure S21 shows the normalized Raman spectra at 1048 and 1123 K. It can be seen that at these 
high temperatures all modes of α’-Ga2S3 have completely disappeared (see the comparison with 
the spectrum at 948 K in Figure 8 of the main text). Moreover, two broad peaks emerge in the 
range from 500 to 800 cm-1. These new peaks cannot be due to a temperature-induced phase 
transition of the α’-phase, because it melts congruently at about 1300 K.3, 4 Therefore, we 
consider that these new peaks must come from the Ga2O3 impurity observed in our HP-XRD 
measurements. β-Ga2O3 exhibits 15 Raman-active optical modes . Thanks to Ref. Γ = 10𝐴𝑔 + 5𝐵𝑔

5 (see Table 1), we can confirm the presence of the β-Ga2O3  by assigning the symmetry of each 
mode observed in our Raman spectra, as can be seen in Figure S21. The  modes are observed 𝐴𝑔

in the XX, YY, ZZ and XY directions and the  modes in the YZ and XZ directions. For this reason, 𝐵𝑔

several modes cannot be seen properly in our unpolarised HT-RS measurements where several 
modes are overlapped. We have to notice that the Raman signals shown in Fig. S21 are quite 
weak (RS spectra are shown with 50x factor in comparison with that of the α’ phase) and that 
this observation is coherent with the small fraction of β-Ga2O3 in the original sample. 

Figure S21. HT normalized Raman spectra of β-Ga2O3 at 1048 and 1123 K. 



Figure S22. Temperature dependence of the experimental Raman-active mode frequencies of 
α’-Ga2S3. 



Figure S23. Temperature dependence of the FWHM of the A’(6) mode. Cubic, quartic and 
harmonic contributions are shown. 



The isothermal mode Grüneisen parameter, , has been tabulated under the quasi-harmonic 𝛾𝑇
𝑖

approximation according to the following equation:6 

                                                               (1) 𝛾𝑇
𝑖 = (𝐵0 𝜔𝑖)(𝑑𝜔𝑖 𝑑𝑃)

where  and  are the frequency of each mode and the isothermal bulk modulus, respectively. 𝜔𝑖 𝐵0

 On the other hand, the isothermal averaged Grüneisen parameter from the macroscopic 

definition, , is defined as:7 𝛾 𝑇
𝑎𝑣

𝛾 𝑇
𝑎𝑣 = 3𝛼𝑉𝑚𝐵0 𝐶𝑣 (2)

expressed in terms of thermal expansion coefficient, , molar volume, , and molar heat 𝛼 𝑉𝑚

capacity, . From the microscopic definition, can be obtained as:𝐶𝑣 𝛾 𝑇
𝑎𝑣 

𝛾 𝑇
𝑎𝑣 = ∑𝐶𝑖𝛾𝑖 𝐶𝑣 (3)

where  corresponds to the Einstein molar heat capacity and  is defined as . In 𝐶𝑖 𝐶𝑣
𝐶𝑣 = ∑𝐶𝑖

particular,  is obtained as a function of the energy of each mode, , as:𝐶𝑖 𝐸𝑖 = ℎ𝑣𝑖

𝐶𝑖 = 𝑅
(𝐸𝑖 𝑘𝐵𝑇)2𝑒

𝐸𝑖 𝑘𝐵𝑇

(𝑒
𝐸𝑖 𝑘𝐵𝑇

‒ 1)2
(4)

where is the frequency in Hz, T the temperature, and ,  and R are the Boltzmann, Planck 𝑣𝑖 𝑘𝐵 ℎ

and ideal gas constants, respectively. 

The simplest model proposed by Klemens allows us to qualitatively describe the mode frequency 
shift at HT as a function of the phonon-phonon coupling as follows:8-10

𝜔𝑖 = 𝜔𝑖𝑜 + 𝐴[1 +
2

𝑒𝑥 ‒ 1] + 𝐵[1 +
3

𝑒𝑦 ‒ 1
+

3

(𝑒𝑦 ‒ 1)2] (5)

where A and B are the cubic and quartic anharmonic contributions; i.e., decays of one phonon 
through third- and fourth-order processes into two or three modes of frequency  or , 𝜔𝑜 2 𝜔𝑜 3

respectively, and where the exponents refer to  and , being ħ  the 𝑥 = ħ𝜔𝑜 2𝑘𝐵𝑇 𝑦 = ħ𝜔𝑜 3𝑘𝐵𝑇

reduced Planck's constant. It has to be said that Eq. 5 has another term in the right side, which 
takes into account the mode shift at HT due to the thermal expansion of the lattice.11-13 We do 
not have HT-XRD measurements to obtain the temperature dependence of the thermal 
expansion to consider this missing term. However, this is an approach to get knowledge of the 
third- and fourth-order processes that govern the temperature dependence of the modes.8, 9

The FWHM varies at HT due to the phonon-phonon coupling according the equation:8

Γ𝑖 = Γ𝑖𝑜 + 𝐶[1 +
2

𝑒𝑥 ‒ 1] + 𝐷[1 +
3

𝑒𝑦 ‒ 1
+

3

(𝑒𝑦 ‒ 1)2] (6)



where C and D are the cubic and quartic anharmonic contributions, respectively.

Under the assumption of the quasiharmonic approximation, the mode frequency shifts observed 
at HP are the result of the variation of bond distances and thus their force constants. However, 
such an assumption is not fulfilled at HT since the mode frequency shifts observed in RS spectra 
depend on two effects: the volume (implicit) effect caused by the lattice thermal expansion and 
the temperature (explicit) effect related to phonon-phonon coupling.14-16 These two 
contributions can be decoupled thanks to HP-RS and HT-RS measurements as follows: 

(𝑑𝜔𝑖

𝑑𝑇 )𝑃 =‒
𝛼
𝛽(𝑑𝜔𝑖

𝑑𝑃 )𝑇 + (𝑑𝜔𝑖

𝑑𝑇 )𝑉 (7)

where  is the volume compressibility. The left-hand side of the Eq. 7 is the isobaric temperature  𝛽

derivative of the mode frequency; that is, the total effect of the temperature on the mode shift, 
obtained from our HT-RS measurements. The first term in the right-hand side is the isothermal 
pressure derivative of the mode frequency, the implicit effect, obtained from our HP-RS 
measurements. The second term is the isochoric temperature derivative of the mode frequency; 
i.e. the explicit effect. We can reformulate the Eq. 7 in terms of the mode Grüneisen parameters: 
13, 17 

𝛾𝑃
𝑖 = 𝛾𝑇

𝑖 + 𝛾𝑉
𝑖 (8)

where the isobaric and isochoric mode Grüneisen parameters are  and 𝛾𝑃
𝑖 = ( ‒ 1 𝛼𝜔𝑖)(𝑑𝜔𝑖 𝑑𝑇)𝑃

, respectively.13, 14 Therefore, we can evaluate the relevance of the 𝛾𝑉
𝑖 = ( ‒ 1 𝛼𝜔𝑖)(𝑑𝜔𝑖 𝑑𝑇)𝑉

explicit effect, , for each mode with Eq. 8. From Eq. 2, we have obtained the experimental  = 𝛾𝑉
𝑖 𝛼

1.03·10-5 K-1, required to calculate . 𝛾𝑃
𝑖

The implicit fraction,  is given by: 18ɳ𝑖

ɳ𝑖 =
𝛼
𝛽

(𝑑𝜔𝑖 𝑑𝑃)𝑇

(𝑑𝜔𝑖 𝑑𝑇)𝑃
=

𝛾𝑇
𝑖

𝛾𝑃
𝑖

(9)



Table S1. Zero-pressure theoretical (only TO) and experimetal frequencies, pressure 
coefficients, and isothermal mode Grüneisen parameter of the Raman-active modes of the α’ 
phase. The evolution of the mode frequencies as a function of pressure has been fitted to 

. For comparison, zero-pressure frequencies corresponding to Raman and 𝜔𝑖 = 𝜔𝑖𝑜 + 𝑎1𝑃 + 𝑎2𝑃2

IR experiments from Ref. 19 are also shown. 

Theoretical Experimental

Mode ω0

(cm-1)
a1 

(cm-1·GPa-1)
a2 

(10-2 cm-1·GPa-2)  𝛾𝑇
𝑖

ω0 
(cm-1)

a1 
(cm-1·GPa-1)

a2  
(10-2 cm-1·GPa-2)  𝛾𝑇

𝑖

A’(1) 68.7 -0.3 -1.4 -0.2 74, 72a -0.5 -0.9 -0.3

A’’(1) 78.1 -0.2 -1.1 -0.1 82, 80a -0.1 -1.0 -0.1
A’(2) 81.5 0.5 2.0 0.2 87, 86a 0.4 2.1 0.2
A’’(2) 96.2 0.4 -0.4 0.2 100, 93(TO)b,

98(LO)a
0.3 -0.4 0.2

A’’(3) 110.0 1.7 -5.0 0.6 118, 115b 1.3 -2.0 0.5
A’(3) 111.3 0.6 -3.2 0.2 116, 114(TO)a,

116(LO)a
0.6 -1.8 0.2

A’(4) 135.7 0.5 -0.7 0.2 143, 141a 0.7 -1.1 0.2
A’(5) 140.2 1.6 -5.4 0.4 147(TO), 146a

150(LO), 147a
1.4
2.0

-3.0
-7.4

0.5 
0.6

A’’(4) 145.7 0.8 -0.8 0.2 148b

A’’(5) 151.8 0.7 2.4 0.2 159 0.8 1.2 0.2
A’’(6) 168.6 2.8 -4.7 0.6 177, 172b 2.7 -3.5 0.7
A’(6) 229.3 7.7 -14.9 1.3 235, 233a 8.0 -17.5 1.6
A’’(7) 263.6 6.3 -11.4 0.9 280a  
A’(7) 277.2 5.0 -7.0 0.7 283, 284b 5.5 -9.1 0.9
A’’(8) 285.3 6.0 -11.3 0.8 290, 300b 6.3 -14.2 1.0
A’(8) 298.4 4.6 -7.2 0.6 307(TO), 307a

310(LO)
4.3
4.1

-3.7
-3.8

0.7 
0.6

A’’(9) 313.5 3.6 -0.8 0.4 326b

A’(9) 318.4 4.8 -8.9 0.6 324, 321a 5.2 -12.6 0.7

A’(10) 322.0 5.4 -10.5 0.6 331, 329a 5.4 -12.0 0.8
A’’(10) 323.5 5.4 -9.4 0.6 335b

A’’(11) 336.5 3.4 -1.8 0.4 344(TO), 343b

351(LO), 355b
4.2
4.1

-8.7
-8.3

0.6
0.5

A’(11) 337.8 3.2 0.2 0.4 366(TO), 368a

372(LO) 
3.1
3.9

2.0
-3.5

0.4
0.5

A’’(12) 338.2 6.6 -10.9 0.7 364b

A’’(13) 378.5 4.8 -7.6 0.5 393, 390b 4.9 -7.1 0.6
A’(12) 379.3 4.8 -7.8 0.5 388, 386a 5.4 -10.4 0.7
A’’(14) 391.4 3.3 -0.5 0.3 411(TO)b

417(LO)b

A’(13) 391.6 3.6 0.3 0.3 407(TO), 404a

425(LO)
3.2
2.8

-0.3
-0.3

0.4
0.3

a Raman modes according to Lucazeau and Leroy (Ref. 19).
b The same for IR modes.



Table S2. Room-temperature experimental frequencies and temperature coefficients, as 
obtained from our HT-RS measurements, where mode frequencies have been fitted to 

. Experimental cubic and quartic anharmonic contributions and their 𝜔𝑖 = 𝜔𝑖𝑜 + 𝑏1𝑇 + 𝑏2𝑇2

absolute ratio are appened. Experimental isobaric, isothermal and isochoric mode Grüneisen 
parameters are also shown as estimations of the total, implicit and explicit effects. The related 
implicit fraction, i, is included.

Mode ω0

(cm-1)
b1

(10-2 cm-1·K-1)
b2

(10-5 cm-1·K-2)
A

(cm-1)
B

(10-3 cm-1)
|A/B|
(103)

𝛾𝑃
𝑖 𝛾𝑇

𝑖 𝛾𝑉
𝑖 ɳ𝑖

A’(1) 72 0.1 -0.2 0.01 -0.02 0.38 0.4 -0.3 0.7 -0.77
A’’(1) 80 -0.6 0.1 -0.05 0.02 3.17 5.9 -0.1 5.9 -0.01
A’(2) 85 -1.0 0.2 -0.10 0.03 3.17 9.8 0.2 9.6 0.02
A’’(2) 99 -0.7 -0.1 -0.09 -0.02 3.63 8.1 0.2 7.9 0.02

A’’(3)* 115 -0.7 -0.1 -0.09 -0.03 2.79 6.4 0.5 5.9 0.08
A’(3)* 115 -0.7 -0.1 -0.09 -0.03 2.79 6.4 0.2 6.1 0.04
A’(4) 141 -0.8 0.1 -0.13 0.04 3.29 5.0 0.2 4.8 0.05
A’(5) 148 -1.1 0.1 -0.19 0.03 5.43 6.8 0.4 6.4 0.07
A’’(4)
A’’(5) 158 -0.4 -0.6 -0.07 -0.28 0.24 4.4 0.2 4.2 0.05
A’’(6)
A’(6) 234 -1.6 0.1 -0.44 0.06 6.93 6.4 1.6 4.8 0.25
A’’(7)
A’(7) 282 0.7 -2.7 0.22 -4.21 0.05 3.3 0.9 2.4 0.28
A’’(8) 288 3.2 -5.4 1.03 -8.51 0.12 0.2 1.0 -0.8 4.14
A’(8) 307 -1.5 -0.1 -0.54 -0.27 2.03 5.1 0.7 4.4 0.13
A’’(9)
A’(9) 324 6.4 -10.9 2.32 -21.01 0.11 0.4 0.7 -0.4 2.05

A’(10) 330 -2.3 0.1 -0.89 0.18 5.09 6.6 0.8 5.9 0.11
A’’(10)
A’’(11) 343(TO)

350(LO)
-2.9
0.5

0.8
-2.9

-1.19
0.19

1.97
-7.03

0.61
0.03

7.0
3.6

0.6
0.5

6.4
3.0

0.08
0.15

A’(11) 366(TO)
369(LO)

-6.7
-2.7

7.6
0.7

-2.94
-1.19

21.57
2.04

0.14
0.58

5.7
6.1

0.4
0.5

5.3
5.6

0.07
0.08

A’’(12)
A’’(13) 394 -2.6 1.6 -1.19 5.07 0.23 4.0 0.6 3.4 0.15
A’(12) 387 -1.0 -0.9 -0.45 -2.54 0.18 3.8 0.6 3.1 0.17
A’’(14)
A’(13) 407(TO)

425(LO)
-0.9
-0.4

-1.0
-1.2

-0.42
-0.21

-3.12
-4.34

0.13
0.05

3.5
2.6

0.4
0.3

3.1
2.3

0.10
0.12



Topological properties

The bulk modulus can be obtained from the different  of each basin by the volume-weighted 𝐵𝑜𝑖

sum of the contributions as follows: 20 

1
𝐵𝑜

= ∑𝑓𝑖
1

𝐵𝑜𝑖
(10)

where  is the fraction of the unit-cell volume occupied by the basin .
𝑓𝑖 =

𝑉𝑖

𝑉 𝑖

The charge transfer is related with the Bader charges,  , and the nominal oxidation states, 𝑄𝑖

, by means of the following relation:21𝑂𝑆𝑖

𝐶𝑇𝑖 =
𝑄𝑖

𝑂𝑆𝑖
(11)

Figure S24. Pressure dependence of a) atomic volumes, b) Bader atomic charges ( ) and c) 𝑄𝑖

charge transfers ( ) of the Ga and S basins.𝐶𝑇𝑖



Figure S25. View of α’-Ga2S3 perpendicular to the c-axis with the bond critical points (BCPs). 
Orange and brown balls refer to Ga-S BCPs. The former is related with the S3 atoms and the 
latter with the S1 and S2 atoms. Red balls indicate the S1-S2 BCPs. The S1 and S2 atoms have 
also BCPs with the S3 atoms. They are represented with balls as follows: green (dark) balls refer 
to S1-S3(S3*) and violet (blue) refer to S2-S3(S3*), respectively. Asterisks indicate those atoms 
separated a longer distance. S-S BCPs are inside the channels, except the S3-S3 BCPs (gold balls) 
that are found between S3-S3 atoms.





Figure S26. Theoretical all-electron 1D-ELF between Ga-S bonds for a) Ga1S4 and b) Ga2S4 
tetrahedra at 0 GPa.



Electronic properties

Figure S27. The first Brillouin zone (BZ) and relevant high symmetry points of α’-Ga2S3.

Figure S28. Atomic contributions to the electronic density of states (EDOS) of α’-Ga2S3 at 
different pressures: a) 0 GPa, b) 6 GPa, and c) 16 GPa.



Figure S29. Electronic band structure and total and partial electronic density of states (EDOS) 
in α’-Ga2S3 at 6 GPa. The 1st valence band (VB) and the 1st and 2nd conduction bands (CB) are 
labelled.
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