Electronic Supplementary Information

Primary photodissociation mechanisms of pyruvic acid on S₁: observation of methylhydroxycarbene and its chemical reaction in the gas phase

B. R. Samanta,¹ R. Fernando,¹ D. Rösch,² H. Reisler^{1*}, and D.L. Osborn^{2*}

¹ Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, United States

² Combustion Research Facility, Sandia National Laboratories, Livermore, California, 94551-0969, United States

I. 351 nm fluence dependence of PA photoproducts

Figure S1: Fluence dependent signals of PA photoproducts a) acetaldehyde and vinyl alcohol at 10.25 eV b) vinyl alcohol at 9.65 eV c) CO_2 at 14.15 eV and d) species M at 9.65 eV. The plotted signal intensities fit to a zero-intercept quadratic equation show dominant linear contribution.

II. 351 nm fluence dependence of radical photoproducts of d₁-PA

Reactive radical species are consumed by wall collisions and/or secondary reactions and their signal intensity as a function of time, $S_i(t)$, can be fit to a first- and second-order decay kinetics profile. Equation S1 combines first and second order kinetics, and can be used to fit the nascent signal intensity, $S_i(t=0)$ for species *i*.¹

$$S_{i}(t) = \frac{k_{1}S_{i}(t=0)}{(2k'+k_{1})e^{k_{1}\cdot t} - 2k'}$$
(S1)

Here k_1 is the rate constant representing the sum of all first order losses (including wall-loss), and $k' = \sum k_2 \cdot [j]_{t=0}$ represents the sum of all second order reactions where *j* is any species with which the product reacts, including self-reaction.

Figure S2: a) The signal intensities of unstable free radical species, obtained at 9.65 eV from d_1 -PA photolysis, are extrapolated using equation S1 for m/z=43, as shown. The extrapolated signal intensities are plotted as a function of fluence for b) CH₃CO and c) DOCO radicals. The plotted signal intensities fit to a zero-intercept quadratic equation.

III. Photoionization spectra of species M

Figure S3: Photoionization spectra of species M (m/z = 88.05), a photoproduct of PA dissociation at 351 nm, in the 8.7 - 9.9 eV region.

IV. PA thermochemistry

Table S1: Summary of thermochemical values utilized in this work. Uncertainty in the values are less than 1 kcal mol⁻¹.

Thermodynamic entity (at 0 K)	(kcal mol ⁻¹)	Source
$\Delta H_{f(\mathrm{PA})}^{0}$	-124.52 ± 0.55	Emel'yanenko et al. 2018 ²
$\Delta H_{f(CH_{3}CHO)}^{0}$	-37.08 ± 0.06	ATcT ³
$\Delta H_{f(H_2C=CHOH)}^0$	-26.95 ± 0.16	ATcT ³
$\Delta H_{f(CO_2)}^0$	-93.955 ± 0.004	ATcT ³
$\Delta H_{f(CH_{3}CO)}^{0}$	$\textbf{-0.80} \pm 0.08$	ATcT ³
$\Delta H_{f(trans-HOCO)}^{0}$	-43.28 ± 0.11	ATcT ³
$\Delta H_{f(CH_{3}COOH)}^{0}$	-100.11 ± 0.10	ATcT ³
$\Delta H_{f(CO)}^{0}$	-27.200 ± 0.006	ATcT ³
$\Delta H(Ac \rightarrow MHC)$	50.5 ± 0.8	da Silva 2016 ⁴
$\Delta E_{adiab}(\text{PA}; \text{S}_1 \leftarrow \text{S}_0)$	76.37 ± 0.03	Sutradhar et al. 2019 ⁵
$\Delta E_{adiab}(PA; S_1 \leftarrow T_1)$	6.0	da Silva ⁶

V. References

- 1. E. V. Shafir, I. R. Slagle and V. D. Knyazev, J. Phys. Chem. A, 2003, 107, 8893-8903.
- 2. V. N. Emel'yanenko, V. V. Turovtsev and Y. A. Fedina, *Thermochim. Acta*, 2018, 665, 70-75.
- 3. B. Ruscic and D. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical, ATcT.anl.gov, (accessed January, 2020).
- 4. G. da Silva, J. Phys. Chem. A, 2016, **120**, 276-283.
- 5. S. Sutradhar, B. R. Samanta, R. Fernando and H. Reisler, *J. Phys. Chem. A*, 2019, **123**, 5906-5917.
- 6. G. da Silva, personal communication.
- 7. B. R. Samanta, S. Sutradhar, R. Fernando, A. I. Krylov and H. Reisler, *J. Phys. Chem. A*, 2018, **122**, 6176-6182.
- 8. P. R. Schreiner, H. P. Reisenauer, D. Ley, D. Gerbig, C.-H. Wu and W. D. Allen, *Science*, 2011, **332**, 1300-1303.
- 9. M. H. Matus, M. T. Nguyen and D. A. Dixon, J. Phys. Chem. A, 2006, 110, 8864-8871.