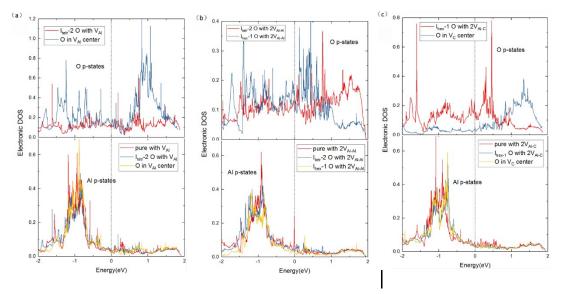
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

First-principles investigations of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Ti₃AlC₂

Zhaocang Meng^{a,b,c}, Canglong Wang^{*a,c,d}, Jitao Liu^{a,c}, Yinlong Wang^e, Xiaolu Zhu^f, Lei Yang^{*a,c,d}, and Liang Huang^b

^a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China. clwang@impcas.ac.cn, lyang@impcas.ac.cn


^b School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

^c School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

^d Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China

^e School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

^fCollege of Electrical Engineering, Longdong University, qingyang 745000, China

Fig. S1 Local DOS for vacancy nearest-neighbor Al atom and interstitial O atom within (a) V_{Al} monovacancy; (b) $2V_{Al-Al}$ divacancy; (c) $2V_{Al-C}$ divacancy.