Supplementary Information for

The potential mechanism of atmospheric new particle formation

involving amino acids with multiple functional groups

Jiarong Liu, ^a Ling Liu, ^a Hui Rong, ^a Xiuhui Zhang, ^{a*}

^a Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China

I. Boundary conditions.

II. Tables and Figures

Fig. S1 (a) The most stable configurations of $(SA)_2 \cdot (A)$, and $(SA)_2 \cdot (A) \cdot (ASP)$ clusters. Hydrogen bonds are shown as dashed lines and the bond lengths are given in Å. (b) Relief map with the projection of localized orbital locator (LOL) of $(SA)_2 \cdot (A)$, and $(SA)_2 \cdot (A) \cdot (ASP)$ clusters where LOL values are shown in the color map.

Fig. S2 (a) The most stable configurations of $(SA)_2 \cdot (A)_2$, and $(SA)_2 \cdot (A)_2 \cdot (ASP)$ clusters. Hydrogen bonds are shown as dashed lines and the bond lengths are given in Å. (b) Relief map with the projection of localized orbital locator (LOL) of $(SA)_2 \cdot (A)_2$, and $(SA)_2 \cdot (A)_2 \cdot (ASP)$ clusters where LOL values are shown in the color map.

Fig. S3 (a) The J (s⁻¹) and (b) R versus [**ASP**] with [**SA**] = 10⁶ molecules cm⁻³, [**A**] = 10⁷ molecules cm⁻³ and four different temperatures (black line: 298 K, red line: 278 K, blue line: 258 K, green line: 238 K).

Fig. S4 (a) The J (s⁻¹) and (b) R versus [**ASP**] with [**SA**] = 10⁸ molecules cm⁻³, [**A**] = 10¹¹ molecules cm⁻³ and four different temperatures (black line: 298 K, red line: 278 K, blue line: 258 K, green line: 238 K).

Fig. S5 (a) The J (s⁻¹) and (b) R versus of [**A**] with [**ASP**] = 10⁶ molecules cm⁻³ and three different [**SA**] (red line: [**SA**] =10⁶ molecules cm⁻³, blue line: [**SA**] =10⁷ molecules cm⁻³, green line: [**SA**] = 10⁸ molecules cm⁻³) at 238 K.

Fig. S6 (a) The J (s⁻¹) and (b) R versus of [**A**] with [**ASP**] = 10⁸ molecules cm⁻³ and three different [**SA**] (red line: [**SA**] = 10⁶ molecules cm⁻³, blue line: [**SA**] = 10⁷ molecules cm⁻³, green line: [**SA**] = 10⁸ molecules cm⁻³) at 238 K.

Fig. S7 ESP-mapped molecular vdW surface of (a) **ASP** and (b) **MOA** molecules. Surface local minima and maxima of ESP of the different functional groups in **ASP** and **MOA** molecules are represented as blue and yellow spheres, respectively.

Table S1 The Electron density ρ (a.u.), Laplacian Bond Order (LBO), bond distances r (Å) between the N and H atoms, Laplacian $\nabla^2 \rho$ (a.u.) at the BCPs, and the number of proton transfer N. The labeled atoms are corresponding to those shown in Figs. S1 and S2.

Table S2 Gibbs free energy of formation, ΔG (kcal mol⁻¹), for all clusters at pressure of 1 atm and temperatures of 298, 278, 258, and 238 K.

Table S3 The enhancement strength (*R*) on cluster formation rate by **ASP** at all the monomers concentration (molecules cm⁻³) conditions and T = 238 K.

Table S4 The enhancement strength (*R*) on cluster formation rate by **ASP** at all the monomers concentration (molecules cm⁻³) conditions and T = 258 K.

Table S5 The enhancement strength (*R*) on cluster formation rate by **ASP** all the monomers concentration (molecules cm⁻³) conditions and T = 278 K.

Table S6 The enhancement strength (*R*) on cluster formation rate by **ASP** at all the monomers concentration (molecules cm⁻³) conditions and T = 298 K.

Table S7 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 238 K.

Table S8 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 258 K.

Table S9 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 278 K.

Table S10 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 298 K.

Table S11 Boundary condition at 298K, 278 K, 258K and 238K, respectively.

Table S12 The values of surface local minima and maxima of ESP of the different functional groupsin ASP and MOA molecules shown. The labeled sites are corresponding to those shown in Fig. S7.

III. Coordinates of the clusters in the system

Tables S13 – S38. The XYZ coordinates of all the studied clusters.

I. Boundary conditions.

In the Atmospheric Cluster Dynamics Code (ACDC) simulations, some clusters growing out of the studied system are unstable and would evaporate back to smaller clusters, while others will continue to grow furtherly. Only clusters allowed to grow out of the studied system can be considered to contribute to the clusters' formation rate. Moreover, whether the cluster has the potential to grow out of the studied system depends on the boundary condition. In ACDC simulations, boundary condition refers to the smallest clusters out of the studied system, which are presumed to be stable enough to grow than evaporate back towards smaller sizes.

For the atmospheric new particle formation (NPF), the stability of the corresponding cluster could be determined by comparing the collision rate and evaporation rate. The collision rate further could be deduced by the collision rate coefficients and the concentration of the acid and base molecules. The results from the studied clusters show that the collision rate coefficients are on the same order of magnitude $(10^{-9} \sim 10^{-10} \text{ molecules}^{-1} \text{ cm}^3 \text{ s}^{-1})$. In the meantime, the evaporation rate chiefly depends on the formation Gibbs free energy of the clusters. Therefore, based on the above analyses, it can be found that the only cluster containing pure **SA** and **A** molecules as well as the cluster containing an **ASP** molecule except for **SA** and **A** molecules are relatively stable enough to resist evaporation and therefore can form larger clusters as well as contribute to particle formation rates. Hence, $(SA)_3 \cdot (A)_3$ and $(SA)_3 \cdot (A) \cdot (ASP)$ clusters are set to be boundary clusters at 238 K, respectively. The corresponding boundary conditions at different temperatures are also listed in Table S11. In addition, a constant coagulation sink coefficient $1 \times 10^3 \text{ s}^{-1}$ was used for considering external losses.

II. Tables and Figures

Fig. S1 (a) The most stable configurations of $(SA)_2 \cdot (A)$, and $(SA)_2 \cdot (A) \cdot (ASP)$ clusters. Hydrogen bonds are shown as dashed lines and the bond lengths are given in Å. (b) Relief map with the projection of localized orbital locator (LOL) of $(SA)_2 \cdot (A)$, and $(SA)_2 \cdot (A) \cdot (ASP)$ clusters where LOL values are shown in the color map.

Fig. S2 (a) The most stable configurations of $(SA)_2 \cdot (A)_2$, and $(SA)_2 \cdot (A)_2 \cdot (ASP)$ clusters. Hydrogen bonds are shown as dashed lines and the bond lengths are given in Å. (b) Relief map with the projection of localized orbital locator (LOL) of $(SA)_2 \cdot (A)_2$, and $(SA)_2 \cdot (A)_2 \cdot (ASP)$ clusters where LOL values are shown in the color map.

Fig. S3 (a) The J (s⁻¹) and (b) R versus [**ASP**] with [**SA**] = 10⁶ molecules cm⁻³, [**A**] = 10⁷ molecules cm⁻³ and four different temperatures (black line: 298 K, red line: 278 K, blue line: 258 K, green line: 238 K).

Fig. S4 (a) The J (s⁻¹) and (b) R versus [**ASP**] with [**SA**] = 10⁸ molecules cm⁻³, [**A**] = 10¹¹ molecules cm⁻³ and four different temperatures (black line: 298 K, red line: 278 K, blue line: 258 K, green line: 238 K).

Fig. S5 (a) The J (s⁻¹) and (b) R versus of [**A**] with [**ASP**] = 10⁶ molecules cm⁻³ and three different [**SA**] (red line: [**SA**] = 10⁶ molecules cm⁻³, blue line: [**SA**] = 10⁷ molecules cm⁻³, green line: [**SA**] = 10⁸ molecules cm⁻³) at 238 K.

Fig. S6 (a) The *J* (s⁻¹) and (b) *R* versus [**A**] with [**ASP**] = 10^8 molecules cm⁻³ and three different [**SA**] (red line: [**SA**] = 10^6 molecules cm⁻³, blue line: [**SA**] = 10^7 molecules cm⁻³, green line: [**SA**] = 10^8 molecules cm⁻³) at 238 K.

Fig. S7 ESP-mapped molecular vdW surface of (a) **ASP** and (b) **MOA** molecules. Surface local minima and maxima of ESP of the different functional groups in **ASP** and **MOA** molecules are represented as blue and yellow spheres, respectively.

Table S1 The Electron density ρ (a.u.), Laplacian Bond Order (LBO), bond distances r (Å) between the N and H atoms, Laplacian $\nabla^2 \rho$ (a.u.) at the BCPs, and the number of proton transfer N. The labeled atoms are corresponding to those shown in Figs. S1 and S2.

Clusters	Bonds	ρ (a.u.)	LBO	r (Å)	$\nabla^2 \rho$ (a.u.)	Ν
(SA) ₂ ·(A)	N1-H1	0.3088	0.623	1.052	-1.864	1
(SA)₂·(A)·(ASP)	N1-H1	0.3256	0.683	1.048	-1.885	2
	N2-H2	0.2791	0.495	1.088	-1.596	2
	N1-H1	0.3118	0.633	1.048	-1.880	
(SA) 2·(A)2	N2-H2	0.2945	0.570	1.067	-1.766	2
(SA)2·(A)2·(ASP)	N1-H1	0.3241	0.682	1.032	-1.914	
	N2-H2	0.3088	0.626	1.037	-1.816	2

Clusters	238K	258K	278K	298K
(SA) ₂	-10.45	-9.77	-9.10	-8.42
(SA) 3	-18.54	-17.00	-15.46	-13.91
(SA)·(A)	-9.15	-8.54	-7.94	-7.33
(SA)·(ASP)	-11.49	-10.62	-9.75	-8.87
(ASP) ₂	-7.09	-6.34	-5.58	-4.82
$(ASP) \cdot (A)$	-3.39	-2.75	-2.11	-1.47
$(\mathbf{SA})_2 \cdot (\mathbf{A})$	-25.52	-23.96	-22.41	-20.84
$(SA)_2 \cdot (ASP)$	-26.72	-24.93	-23.14	-21.35
$(SA) \cdot (ASP)_2$	-23.45	-21.59	-19.73	-17.85
$(ASP)_2 \cdot (A)$	-8.51	-6.92	-5.33	-3.73
$(SA) \cdot (A) \cdot (ASP)$	-18.55	-17.04	-15.54	-14.03
(ASP) ₃	-10.15	-5.69	-3.99	-2.28
(SA) ₃ ·(A)	-37.17	-34.84	-32.52	-30.19
$(\mathbf{SA})_2 \cdot (\mathbf{A})_2$	-33.28	-31.04	-28.81	-26.56
$(ASP)_3 \cdot (A)$	-13.37	-8.23	-5.57	-2.90
$(\mathbf{ASP})_2 \cdot (\mathbf{A})_2$	-11.66	-9.39	-7.12	-4.89
$(SA)_2 \cdot (ASP) \cdot (A)$	-38.48	-35.91	-33.33	-30.74
$(SA) \cdot (ASP)_2 \cdot (A)$	-33.70	-31.05	-28.40	-25.73
$(\mathbf{SA}) \cdot (\mathbf{ASP}) \cdot (\mathbf{A})_2$	-20.12	-17.77	-15.42	-13.06
(SA) ₃ ·(A) ₂	-51.01	-47.94	-44.87	-41.79
(ASP) ₃ ·(A) ₂	-17.27	-13.85	-10.44	-7.00
$(\mathbf{SA})_2 \cdot (\mathbf{ASP}) \cdot (\mathbf{A})_2$	-49.84	-46.54	-43.24	-39.92
$(\mathbf{SA}) \cdot (\mathbf{ASP})_2 \cdot (\mathbf{A})_2$	-33.10	-29.79	-26.49	-23.17

Table S2 Gibbs free energy of formation, ΔG (kcal mol⁻¹), for all clusters at pressure of 1 atm and temperatures of 298, 278, 258, and 238 K.

[6 4]	[4]	[ACD]_106	[ACD]_5106	[A CD]_107	[ACD]_5107	[ACD]_108
	[A]	$[ASP]=10^{\circ}$	$[ASP] = 5 \times 10^{\circ}$	$[\mathbf{ASP}] = 10^{\circ}$	$[ASP]=5\times10^{\circ}$	$[ASP]=10^{\circ}$
$[SA] = 10^{6}$	$[A] = 10^7$	2.19	6.67	12.34	69.65	181.22
$[SA] = 10^{6}$	$[A] = 10^8$	1.09	1.46	1.95	6.82	16.26
$[SA] = 10^{6}$	[A]=10 ⁹	1.04	1.17	1.31	2.44	4.40
$[SA] = 10^{6}$	$[A] = 10^{10}$	1.05	1.17	1.26	1.76	2.64
$[SA] = 10^{6}$	[A]=10 ¹¹	1.04	1.11	1.15	1.50	2.39
$[SA] = 10^7$	$[A] = 10^{7}$	1.31	2.46	3.91	17.79	41.88
$[SA] = 10^7$	$[A] = 10^8$	0.99	1.03	1.17	3.02	6.38
$[SA] = 10^7$	[A]=10 ⁹	1.01	1.07	1.14	1.77	2.86
$[SA] = 10^7$	$[A] = 10^{10}$	1.01	1.04	1.08	1.39	1.93
$[SA] = 10^7$	[A]=10 ¹¹	1.00	1.02	1.04	1.24	1.65
$[SA] = 10^8$	$[A] = 10^{7}$	1.09	1.37	1.65	3.93	7.21
$[SA] = 10^8$	$[A] = 10^8$	1.01	1.06	1.14	2.00	3.39
$[SA] = 10^8$	[A]=10 ⁹	1.01	1.05	1.09	1.52	2.16
$[SA] = 10^8$	$[A] = 10^{10}$	1.00	1.02	1.04	1.24	1.55
[SA]=10 ⁸	[A]=10 ¹¹	1.00	1.01	1.02	1.11	1.24

Table S3 The enhancement strength (*R*) on cluster formation rate by **ASP** at all the monomers concentration (molecules cm⁻³) conditions and T=238 K.

Table S4 The enhancement strength (R) on cluster formation rate by ASP at all the monomers

[SA]	[A]	[ASP]=10 ⁶	[ASP]=5×10 ⁶	[ASP]=10 ⁷	[ASP]=5×10 ⁷	[ASP]=10 ⁸
$[SA] = 10^{6}$	[A]=10 ⁷	1.00	1.00	1.00	1.02	1.02
$[SA] = 10^{6}$	$[A] = 10^8$	1.00	1.00	1.00	1.03	1.02
$[SA] = 10^{6}$	[A]=10 ⁹	1.00	1.00	1.01	1.04	1.08
$[SA] = 10^{6}$	$[A] = 10^{10}$	1.00	1.01	1.01	1.05	1.02
$[SA] = 10^{6}$	[A]=10 ¹¹	1.00	1.01	1.03	1.14	1.02
$[SA] = 10^7$	$[A] = 10^{7}$	0.99	0.98	0.96	0.90	1.02
$[SA] = 10^7$	$[A] = 10^8$	1.00	0.98	0.97	0.92	1.02
$[SA] = 10^7$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.02
$[SA] = 10^7$	$[A] = 10^{10}$	1.00	1.00	1.01	1.05	1.02
$[SA] = 10^7$	[A]=10 ¹¹	1.00	1.01	1.02	1.08	1.02
$[SA] = 10^8$	$[A] = 10^{7}$	0.98	0.90	0.83	0.56	1.02
$[SA] = 10^8$	$[A] = 10^8$	0.98	0.92	0.85	0.59	1.02
$[SA] = 10^8$	[A]=10 ⁹	0.99	0.97	0.94	0.79	1.04
$[SA] = 10^8$	$[A] = 10^{10}$	1.00	1.00	1.00	1.01	1.04
$[SA] = 10^8$	[A]=10 ¹¹	1.00	1.00	1.00	1.02	1.02

concentration (molecules cm⁻³) conditions and T=258 K.

[SA]	[A]	[ASP]=10 ⁶	[ASP]=5×10 ⁶	[ASP]=10 ⁷	[ASP]=5×10 ⁷	[ASP]=10 ⁸
[SA]=10 ⁶	[A]=10 ⁷	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^{6}$	$[A] = 10^8$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^{6}$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^{6}$	$[A] = 10^{10}$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^{6}$	[A]=10 ¹¹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^7$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^8$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	[A]=10 ¹⁰	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	[A]=10 ¹¹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	$[A] = 10^7$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	[A]=10 ⁸	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	[A]=10 ¹⁰	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	[A]=10 ¹¹	1.00	1.00	1.00	1.00	1.00

Table S5 The enhancement strength (*R*) on cluster formation rate by **ASP** at all the monomers concentration (molecules cm⁻³) conditions and T=278 K.

Table S6 The enhancement strength (R) on cluster formation rate by ASP at all the monomers

[SA]	[A]	[ASP]=10 ⁶	[ASP]=5×10 ⁶	[ASP]=10 ⁷	$[ASP] = 5 \times 10^7$	[ASP]=10 ⁸
[SA]=10 ⁶	$[A] = 10^{7}$	1.00	1.00	1.00	1.00	1.00
[SA]=10 ⁶	$[A] = 10^8$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^{6}$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
[SA]=10 ⁶	$[A] = 10^{10}$	1.00	1.00	1.00	1.00	1.00
[SA]=10 ⁶	[A]=10 ¹¹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^{7}$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^8$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^{10}$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^7$	$[A] = 10^{11}$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	$[A] = 10^{7}$	1.00	1.00	1.00	1.00	1.00
[SA]=10 ⁸	$[A] = 10^8$	1.00	1.00	1.00	1.00	1.00
[SA]=10 ⁸	[A]=10 ⁹	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	$[A] = 10^{10}$	1.00	1.00	1.00	1.00	1.00
$[SA] = 10^8$	[A]=10 ¹¹	1.00	1.00	1.00	1.00	1.00

concentration (molecules cm⁻³) conditions and T=298 K.

Clusters	Evaporation rate coefficients	Clusters	Evaporation rate coefficients
2SA→1SA+1SA	1.23	2ASP·2A→2ASP·1A+1A	6.04×10 ⁷
1SA·1A→1SA+1A	5.01×10 ¹	2SA•1ASP•1A→1SA•1ASP•1A+1SA	8.78×10 ⁻⁹
1SA·ASP→1SA+1ASP	4.37×10 ⁻¹	2SA•1ASP•1A→2SA•1ASP+1A	4.45×10 ⁻¹
$1ASP \cdot 1A \rightarrow 1ASP + 1A$	1.79×10 ⁷	2SA•1ASP•1A→1SA•1A+1ASP	2.58×10 ⁻²
2ASP→1ASP+1ASP	3.38×10 ³	1SA•2ASP•1A→2ASP•1A+1SA	1.96×10 ⁻¹³
3SA→2SA+1SA	5.40×10 ²	1SA•2ASP•1A→1SA•2ASP+1A	1.80×10 ¹
2SA·1A→2SA+1A	3.33×10 ⁻⁴	1SA•2ASP•1A→1SA•1ASP•1A+1ASP	2.85×10 ⁻⁴
2SA·1A→1SA·1A+1SA	1.25×10 ⁻⁵	1SA•1ASP•2A→1SA•1ASP•1A+1A	1.06×10 ⁹
3ASP→2ASP+1ASP	5.45×10 ⁷	3 SA •2 A →2 SA •2 A +1 SA	8.44×10 ⁻⁷
1 SA ·2 ASP →2 ASP +1 SA	2.74×10 ⁻⁵	3SA•2A→3SA•1A+1A	5.11×10 ⁻³
1SA·2ASP→1SA·1ASP+1ASP	2.63×10 ⁻¹	3ASP·2A→2ASP·2A+1ASP	1.90×10 ⁵
2ASP·1A→2ASP+1A	2.55×10 ⁹	3ASP·2A→3ASP·1A+1A	1.43×10 ⁷
2ASP·1A→1ASP·1A+1ASP	2.34×10 ⁵	2SA·1ASP·2A→1SA·1ASP·2A+1SA	9.07×10 ⁻¹⁸
1SA·1ASP·1A→1ASP·1A+1SA	2.41×10 ⁻⁴	2SA·1ASP·2A→2SA·2A+1ASP	1.35×10 ⁻⁵
1SA·1ASP·1A→1SA·1ASP+1A	1.07×10 ⁴	2SA·1ASP·2A→2SA·1ASP·1A+1A	1.25
1SA·1ASP·1A→1SA·1A+1ASP	4.60×10 ¹	1 SA·2ASP·2A→2ASP·2A +1 SA	4.37×10 ⁻¹⁰
2SA·ASP→SA·ASP +1SA	2.01×10 ⁻⁴	1 SA·2ASP·2A→1SA·2ASP·1A +1A	1.36×10 ¹¹
2SA·ASP→2SA +1ASP	2.31×10 ⁻⁵	1SA·2ASP·2A→1SA·1ASP·2A+1ASP	2.81×10 ⁻²
3SA·1A→2SA·1A+1SA	3.00×10 ⁻¹	2SA·2A→2SA·1A+1A	1.80×10 ³
3 SA ·1 A →3 SA +1 A	2.37×10 ⁻⁷	3ASP·1A→3ASP+1A	6.10×10 ⁷
3ASP·1A→2ASP·1A+1ASP	1.12×10 ⁶		

Table S7 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 238 K.

Table S8	Evaporation	rate co	oefficients	(s ⁻¹) of	monomer	from	corresponding	clusters in the
system at	T = 258 K.							

Clusters	Evaporation rate	Clusters	Evaporation rate
	coefficients	Clusters	coefficients
2 SA →1 SA +1 SA	2.46×10 ¹	2ASP·2A→2ASP·1A+1A	3.67×10 ⁸
1 SA \cdot 1 A \rightarrow 1 SA $+$ 1 A	7.09×10 ²	$2SA \cdot 1ASP \cdot 1A \rightarrow 1SA \cdot 1ASP \cdot 1A + 1SA$	1.75×10 ⁻⁶
1SA·ASP→1SA+1ASP	1.50×10 ¹	2SA·1ASP·1A→2SA·1ASP+1A	1.34×10 ¹
$1ASP \cdot 1A \rightarrow 1ASP + 1A$	1.05×10 ⁸	2SA·1ASP·1A→1SA·1A+1ASP	1.49
2ASP→1ASP+1ASP	4.47×10 ⁴	1SA·2ASP·1A→2ASP·1A+1SA	9.24×10 ⁻¹¹
3 SA →2 SA +1 SA	1.05×10 ⁴	1SA·2ASP·1A→1SA·2ASP+1A	4.32×10 ²
$2\mathbf{SA} \cdot 1\mathbf{A} \rightarrow 2\mathbf{SA} + 1\mathbf{A}$	2.11×10 ⁻²	1SA·2ASP·1A→1SA·1ASP·1A+1ASP	3.02×10 ⁻²
$2SA \cdot 1A \rightarrow 1SA \cdot 1A + 1SA$	1.12×10 ⁻³	1SA·1ASP·2A→1SA·1ASP·1A+1A	6.81×10 ⁹
3ASP→2ASP+1ASP	1.20×10 ¹¹	3 SA •2A→2 SA •2A+1 S A	7.48×10 ⁻⁵
1 SA ·2 A SP→2 A SP+1 S A	3.35×10 ⁻³	$3SA \cdot 2A \rightarrow 3SA \cdot 1A + 1A$	2.02×10 ⁻¹
1SA·2ASP→1SA·1ASP+1ASP	1.24×10 ¹	3ASP·2A→2ASP·2A+1ASP	4.31×10 ⁶
2ASP·1A→2ASP+1A	1.59×10 ¹⁰	3ASP·2A→3ASP·1A+1A	9.11×10 ⁵
$2ASP \cdot 1A \rightarrow 1ASP \cdot 1A + 1ASP$	7.57×10^{6}	2SA·1ASP·2A→1SA·1ASP·2A+1SA	7.25×10 ⁻¹⁵
1SA·1ASP·1A→1ASP·1A+1SA	1.52×10 ⁻²	2SA·1ASP·2A→2SA·2A+1ASP	1.55×10 ⁻³
1SA·1ASP·1A→1SA·1ASP+1A	1.14×10 ⁵	2SA·1ASP·2A→2SA·1ASP·1A+1A	3.22×10 ¹
1SA·1ASP·1A→1SA·1A+1ASP	1.19×10 ³	1SA•2ASP•2A→2ASP•2A+1SA	1.07×10 ⁻⁷
$2SA \cdot ASP \rightarrow SA \cdot ASP + 1SA$	1.41×10 ⁻²	1SA•2ASP•2A→1SA•2ASP•1A+1A	4.28×10 ¹¹
$2SA \cdot ASP \rightarrow 2SA + 1ASP$	2.79×10 ⁻³	1SA·2ASP·2A→1SA·1ASP·2A+1ASP	1.47
$3SA \cdot 1A \rightarrow 2SA \cdot 1A + 1SA$	8.72	$2SA \cdot 2A \rightarrow 2SA \cdot 1A + 1A$	2.32×10 ⁴
3SA·1A→3SA+1A	2.25×10 ⁻⁵	3ASP·1A→3ASP+1A	3.74×10 ⁸
3ASP·1A→2ASP·1A+1ASP	2.43×10 ⁹		

Table S9 E	Evaporation	rate co	efficients	(s ⁻¹) of	monomer	from	corresponding	clusters i	in the
system at T	^T = 278 K.								

Clusters	Evaporation rate coefficients	Clusters	Evaporation rate coefficients
2SA→1SA+1SA	3.14×10 ²	2ASP·2A→2ASP·1A+1A	1.71×10 ⁹
1 SA $\cdot 1$ A $\rightarrow 1$ SA $+1$ A	6.70×10 ³	2SA·1ASP·1A→1SA·1ASP·1A +1SA	1.68×10 ⁻⁴
1SA·ASP→1SA+1ASP	3.11×10 ²	2SA·1ASP·1A→2SA·1ASP+1A	2.52×10^{2}
$1ASP \cdot 1A \rightarrow 1ASP + 1A$	4.72×10 ⁸	2SA·1ASP·1A→1SA·1A+1ASP	4.94×10 ¹
$2ASP \rightarrow 1ASP + 1ASP$	4.16×10 ⁵	1SA•2ASP•1A→2ASP•1A+1SA	1.79×10 ⁻⁸
3 SA →2 SA +1 SA	1.34×10 ⁵	1SA·2ASP·1A→1SA·2ASP+1A	6.56×10 ³
$2SA \cdot 1A \rightarrow 2SA + 1A$	7.31×10 ⁻¹	1SA•2ASP•1A→1SA•1ASP•1A+1ASP	1.67
2SA·1A→1SA·1A+1SA	5.23×10 ⁻²	1SA·1ASP·2A→1SA·1ASP·1A+1A	3.39×10 ¹⁰
3ASP→2ASP+1ASP	5.79×10 ¹¹	3SA·2A→2SA·2A+1SA	3.53×10 ⁻³
1SA·2ASP→2ASP+1SA	2.01×10 ⁻¹	$3SA \cdot 2A \rightarrow 3SA \cdot 1A + 1A$	4.73
1SA·2ASP→1SA·1ASP+1ASP	3.34×10 ²	3ASP·2A→2ASP·2A+1ASP	6.12×10 ⁷
2ASP·1A→2ASP+1A	7.48×10^{10}	3ASP·2A→3ASP·1A+1A	7.51×10^{6}
2ASP·1A→1ASP·1A+1ASP	7.31×10 ⁷	2SA·1ASP·2A→1SA·1ASP·2A+1SA	2.21×10 ⁻¹²
1SA·1ASP·1A→1ASP·1A+1SA	5.15×10-1	2SA·1ASP·2A→2SA·2A+1ASP	9.11×10 ⁻²
1SA·1ASP·1A→1SA·1ASP+1A	8.46×10 ⁵	2SA•1ASP•2A→2SA•1ASP•1A+1A	5.08×10 ²
1SA·1ASP·1A→1SA·1A+1ASP	1.93×10 ⁴	1SA•2ASP•2A→2ASP•2A+1SA	1.16×10 ⁻⁵
$2SA \cdot ASP \rightarrow SA \cdot ASP + 1SA$	5.34×10 ⁻¹	1SA•2ASP•2A→1SA•2ASP•1A+1A	1.12×10^{12}
2SA·ASP→2SA +1ASP	1.71×10 ⁻¹	1SA•2ASP•2A→1SA•1ASP•2A+1ASP	4.27×10^{1}
3 SA ·1 A →2 SA ·1 A +1 S A	1.56×10 ²	2SA·2A→2SA·1A+1A	2.07×10 ⁵
3 SA ·1 A →3 SA +1 A	1.09×10 ⁻³	3ASP·1A→3ASP+1A	2.93×10 ⁹
3ASP·1A→2ASP·1A+1ASP	1.95×10 ¹⁰		

Table S10 Evaporation rate coefficients (s⁻¹) of monomer from corresponding clusters in the system at T = 298 K.

Clusters	Evaporation rate	Clusters	Evaporation rate
Clusters	coefficients	Clusters	coefficients
2SA→1SA+1SA	2.89×10 ³	2ASP·2A→2ASP·1A+1A	5.94×10 ⁹
1SA·1A→1SA+1A	4.76×10 ⁴	2SA·1ASP·1A→1SA·1ASP·1A +1SA	8.73×10 ⁻³
1SA·ASP→1SA+1ASP	4.34×10 ³	2SA·1ASP·1A→2SA·1ASP+1A	3.25×10 ³
$1ASP \cdot 1A \rightarrow 1ASP + 1A$	1.74×10 ⁹	2SA·1ASP·1A→1SA·1A+1ASP	1.01×10 ³
2ASP→1ASP+1ASP	2.86×10 ⁶	1 SA·2ASP·1A→2ASP·1A +1 SA	1.74×10 ⁻⁶
3SA→2SA+1SA	1.22×10^{6}	1 SA·2ASP·1A→1SA·2ASP +1A	6.89×10 ⁴
2SA·1A→2SA+1A	1.60×10 ¹	1SA·2ASP·1A→1SA·1ASP·1A+1ASP	5.45×10 ¹
2SA·1A→1SA·1A+1SA	1.48	1SA•1ASP•2A→1SA•1ASP•1A+1A	1.35×10 ¹¹
3ASP→2ASP+1ASP	2.29×10 ¹²	3 SA •2 A →2 SA •2 A +1 S A	9.75×10 ⁻²
1 SA ·2 ASP →2 ASP +1 SA	7.17	3 SA •2A→3 SA •1A+1A	7.26×10 ¹
1SA·2ASP→1SA·1ASP+1ASP	5.86×10 ³	3ASP·2A→2ASP·2A+1ASP	6.83×10 ⁸
2ASP·1A→2ASP+1A	2.90×10 ¹¹	3ASP·2A→3ASP·1A+1A	4.81×10 ⁷
2ASP·1A→1ASP·1A+1ASP	5.28×10 ⁸	2SA·1ASP·2A→1SA·1ASP·2A+1SA	3.17×10 ⁻¹⁰
1SA·1ASP·1A→1ASP·1A+1SA	1.11×10^{1}	2SA·1ASP·2A→2SA·2A+1ASP	3.09
1SA·1ASP·1A→1SA·1ASP+1A	4.79×10 ⁶	2SA·1ASP·2A→2SA·1ASP·1A+1A	5.61×10 ³
1SA·1ASP·1A→1SA·1A+1ASP	2.15×10 ⁵	1SA•2ASP•2A→2ASP•2A+1SA	7.46×10 ⁻⁴
2SA·ASP→SA·ASP +1SA	1.22×10 ¹	1SA•2ASP•2A→1SA•2ASP•1A+1A	2.57×10 ¹²
2SA·ASP→2SA +1ASP	5.92	1SA•2ASP•2A→1SA•1ASP•1A+1ASP	8.01×10 ²
3SA·1A→2SA·1A+1SA	1.85×10 ³	$2SA \cdot 2A \rightarrow 2SA \cdot 1A + 1A$	1.37×10^{6}
3SA·1A→3SA+1A	3.12×10 ⁻²	3ASP·1A→3ASP+1A	1.73×10 ¹⁰
3ASP·1A→2ASP·1A+1ASP	1.18×10 ¹¹		

Temperature	Boundary clusters	
298K	(SA) ₃ ·(A) ₃	
278K	(SA) ₃ ·(A) ₃	
258K	(SA) ₃ ·(A) ₃	
238K	$(\mathbf{SA})_3 \cdot (\mathbf{A})_3, (\mathbf{SA})_3 \cdot (\mathbf{A}) \cdot (\mathbf{ASP})$	

Table S11 Boundary condition at 298K, 278 K, 258K and 238 K, respectively.

 Table S12 The values of surface local minima and maxima of ESP of the different functional groups

 in ASP and MOA molecules. The labeled site numbers are corresponding to those shown in Fig.

 S7.

Molecules	Functional groups	Site numbers	ESP (kcal/mol)
ASP	-COOH	1	56.17
		2	-26.04
	-COOH	3	-26.04
		4	56.17
	-NH ₂	5	-34.71
		6	20.96
		7	20.96
MOA	-COOH	1'	56.71
		2'	-29.85
	-COOH	3'	56.71
		4'	-29.85

Atom	Х	Y	Z
S	-0.000002	0.000001	-0.153840
0	0.641015	-1.068244	-0.819725
0	-0.641020	1.068270	-0.819690
0	1.029516	0.662937	0.836058
0	-1.029509	-0.662963	0.836045
Н	1.691785	0.010654	1.099951
Н	-1.691765	-0.010681	1.099974

III. Coordinates of the clusters in the system

Table S14. Coordinates of A. Units are in angstrom.

			0
Atom	Х	Y	Z
Ν	0.000000	0.113488	0.000000
Н	-0.939049	-0.264998	0.000000
Н	0.469524	-0.264710	0.813353

			ii ungsuom.
Atom	Х	Y	Z
С	-0.510929	0.385494	-0.354267
Н	-0.371751	0.310722	-1.432717
Ν	-0.453859	1.772637	0.039483
Н	-0.787484	1.892300	0.987989
Н	0.487075	2.130649	-0.050557
С	-1.881844	-0.157951	-0.012957
О	-2.583063	0.260784	0.860556
0	-2.203590	-1.222219	-0.765768
Н	-3.061773	-1.545080	-0.461082
С	0.509869	-0.542762	0.325069
Н	0.361511	-1.584345	0.032988
Н	0.405111	-0.496933	1.411073
0	2.816285	-0.941030	0.606026
С	1.923704	-0.167112	-0.029468
0	2.245626	0.706400	-0.784276

Table S15	Coordinates	of ASP	Units	are in	angstrom
Table 515.	Coordinates	017101.	Onno	are m	ungsuom.

Table S16. Coordinates of (SA)₂. Units are in angstrom.

_

Table 510. Coordinates of (SA)2. Onits are in angstrom.			ii aligsuolli.
Atom	Х	Y	Ζ
S	-2.035487	-0.073173	0.114174
0	-1.067162	0.084496	1.156741

0	-3.311024	-0.603152	0.396130
0	-2.180636	1.369567	-0.491854
Н	-2.959535	1.415304	-1.063055
0	-1.423669	-0.890222	-1.038406
Н	-0.462450	-0.657408	-1.157871
0	1.067111	-0.085041	-1.156651
S	2.035447	0.073169	-0.114181
0	1.423398	0.890156	1.038314
0	3.310760	0.603600	-0.396318
0	2.181233	-1.369418	0.492059
Н	0.462240	0.657071	1.157837
Н	2.960289	-1.414778	1.063076

Atom	Х	Y	Z
S	-0.598705	-0.112567	0.085247
0	0.102650	-0.107436	1.324258
0	-1.757163	-0.906227	-0.109555
0	0.387982	-0.388929	-1.057132
0	-1.008722	1.400070	-0.155160
Н	1.367683	-0.203478	-0.740440
Н	-1.744008	1.429702	-0.779557
Ν	2.731959	0.043275	-0.051253
Н	3.195629	0.914291	-0.278558
Н	3.405900	-0.706706	-0.145097
Н	2.432383	0.084523	0.919177

Table S18. Coordinates of (SA)·(ASP). Units are in angstrom.

1401	Table 510. Coolemates of (SA) (ASI). Onits are in angstrom.			
Atom	Х	Y	Z	
С	-1.120251	0.194716	-0.019924	
Н	-0.920966	-0.199425	-1.015962	
Ν	-0.674219	-0.790033	0.959173	
Н	-0.730628	-0.406960	1.898069	
Н	-1.272569	-1.607936	0.897529	
С	-0.282498	1.445253	0.134282	
0	0.429508	1.670080	1.080373	
0	-0.476334	2.298317	-0.859919	
Н	0.108803	3.057446	-0.735199	
С	-2.599939	0.577586	0.086388	
Н	-2.852568	1.350860	-0.638883	
Н	-2.831245	0.983610	1.074394	
0	-4.790686	-0.250875	-0.157832	
С	-3.502096	-0.605392	-0.152880	
0	-3.132935	-1.734999	-0.314708	

Н	-5.317470	-1.047506	-0.307808	
S	2.598240	-0.472824	-0.252561	
0	3.789496	-1.049496	-0.738744	
0	1.645910	0.113600	-1.149774	
0	1.861490	-1.506574	0.624752	
Н	0.877937	-1.245358	0.743240	
0	3.031924	0.634064	0.775554	
Н	2.248113	1.144763	1.046570	

Table S19 . Coordinates of (ASP) (A). Units are in angstro

Н	2.248113	1.144763	1.046570
Tal	ble 810 Coordinates	of (ASD). (A) Unite of	no in onactrom
Ia	v	V	
Atom	Λ	I	L
С	-1.141336	0.379450	-0.344452
Н	-0.957311	0.298936	-1.415591
Ν	-1.080277	1.769664	0.045565
Н	-1.449887	1.892795	0.980511
Н	-0.125560	2.099737	0.002909
С	-2.532473	-0.140890	-0.059805
0	-3.263218	0.286961	0.785648
0	-2.844060	-1.199077	-0.826886
Н	-3.717036	-1.507696	-0.551601
С	-0.162007	-0.556753	0.380717
Н	-0.316971	-1.598181	0.091912
Н	-0.310378	-0.500356	1.461051
0	2.126282	-0.976060	0.7436690
С	1.277499	-0.211760	0.082464
0	1.612580	0.664743	-0.681050
Н	3.062115	-0.705580	0.500436
Ν	4.498794	-0.002718	-0.135121
Н	5.088817	0.536970	0.485876
Н	3.991251	0.645938	-0.730317
Н	5.102566	-0.564005	-0.722886

	Table S20.	Coordinates of	$(ASP)_2$.	Units	are in	angstron
--	------------	----------------	-------------	-------	--------	----------

	Table S20. Coordinates of (ASP)2. Units are in angstrom.					
Atom	Х	Y	Z			
С	-4.068018	0.439885	0.409068			
Н	-3.641550	1.441800	0.454592			
Ν	-4.059898	-0.143846	1.729302			
Н	-4.643762	-0.970750	1.760802			
Н	-3.118166	-0.369543	2.018007			
С	-5.503609	0.556530	-0.056766			
О	-6.398365	-0.146939	0.309985			
О	-5.653317	1.508438	-0.991597			
Н	-6.574988	1.489899	-1.281036			
С	-3.319343	-0.352944	-0.674422			

	Н	-3.437000	0.106228	-1.658552
	Н	-3.712637	-1.368558	-0.748610
	0	-1.204613	-1.201615	-1.252521
	С	-1.841791	-0.441460	-0.403097
	0	-1.303122	0.151974	0.516579
	Н	-0.226221	-1.216651	-1.047546
	С	3.407233	-0.615098	0.382554
	Н	3.614818	-0.602445	1.452108
	Ν	3.957352	-1.818926	-0.193075
	Н	3.642332	-1.942241	-1.147256
	Н	4.967585	-1.794818	-0.161088
	С	1.905962	-0.612227	0.200233
	Ο	1.366340	-1.197920	-0.719899
	О	1.272380	0.124573	1.075659
	Н	0.295531	0.142269	0.873801
	С	3.918649	0.706001	-0.217288
	Н	3.408050	1.567082	0.218789
	Н	3.736737	0.735982	-1.293477
	Ο	5.857682	1.999629	-0.564016
	С	5.394440	0.885038	0.019925
	Ο	6.093584	0.144850	0.652174
_	Н	6.801404	2.062870	-0.366260
_				

Table S21.	Coordinates	of	$(SA)_3$. Units	are in	angstrom

Н	6.801404	2.062870	-0.366260
т	able S21 Coordinat	es of (SA) ₃ Units are i	n angstrom
Atom	X	Y	Z
S	0.167928	1.320047	-0.057411
0	-0.089819	0.122820	-0.837876
0	1.368642	2.008926	-0.384231
Н	3.071998	1.295407	-0.300452
0	0.134871	0.940161	1.435600
0	-1.003405	2.277495	-0.162647
0	3.782073	0.624127	-0.246006
S	3.189524	-0.772195	0.086627
0	4.262275	-1.665797	0.230740
0	2.405779	-1.159178	-1.203415
0	-2.385102	-1.251087	-1.033280
Н	1.501630	-0.787033	-1.195056
Н	-1.502694	-0.804783	-1.022412
0	2.229810	-0.619051	1.147865
0	-3.143590	0.853129	-0.090075
Н	0.887414	0.312052	1.592668
Н	-1.882569	1.788019	-0.119931
0	-4.637305	-1.102719	-0.248887
S	-3.352713	-0.563822	-0.047144

0	-2.803894	-0.987960	1.360057
Н	-3.114271	-1.875069	1.589251

Atom	Х	Y	Z
С	-4.693582	-1.007969	-0.040092
Н	-4.819815	-0.671438	-1.068089
Ν	-4.779980	0.122093	0.852811
Н	-4.864149	-0.184005	1.814473
Н	-3.987520	0.746983	0.767826
С	-5.818200	-1.966929	0.284725
0	-6.341217	-2.071546	1.355302
0	-6.129003	-2.750816	-0.761291
Н	-6.811042	-3.368293	-0.466779
С	-3.387219	-1.825681	0.040311
Н	-3.415652	-2.645586	-0.681796
Н	-3.255121	-2.245857	1.035731
0	-1.126947	-1.118384	0.333922
С	-2.170498	-0.996448	-0.280593
0	-2.343073	-0.160030	-1.269830
Н	-1.492166	0.395508	-1.435056
С	-0.452500	2.100765	-0.112358
Н	-0.420896	1.326536	0.653147
Ν	-0.292541	1.463545	-1.421030
Н	-0.337914	2.162002	-2.156432
Н	0.617154	1.011577	-1.497241
С	-1.837894	2.708449	-0.026878
0	-2.594035	2.562446	0.888760
0	-2.119822	3.459205	-1.101109
Н	-3.014522	3.808987	-0.994318
С	0.603022	3.178055	0.218950
Н	0.360029	3.652661	1.166965
Н	0.633580	3.916387	-0.580020
0	2.527658	2.109667	-0.684799
С	1.930076	2.465007	0.305917
0	2.300166	2.182259	1.533769
Н	3.012672	1.464902	1.493666
С	3.744611	-0.541813	-0.008000
Н	4.168723	0.162050	-0.720541
Ν	3.912632	0.021892	1.331222
Н	3.510601	-0.596433	2.028717

Table S22. Coordinates of (ASP)₃. Units are in angstrom.

Н	4.905100	0.117687	1.518635
С	2.277527	-0.678955	-0.385007
0	1.918680	-0.876850	-1.515471
0	1.460630	-0.605999	0.654360
Н	0.526727	-0.798100	0.389567
С	4.397849	-1.911094	-0.206801
Н	4.184520	-2.289752	-1.207118
Н	4.000704	-2.645767	0.498131
0	6.523124	-0.882947	0.272590
С	5.891423	-1.857486	-0.030496
0	6.461016	-3.049501	-0.248826
Н	7.413114	-2.948193	-0.117559

Table S23. Coordinates of $(SA)_2$ ·(A). Units are in angstrom.

Atom	Х	Y	Z
S	-1.774334	-0.337775	-0.049575
0	-1.086230	0.169982	1.141194
0	-0.999187	-1.346365	-0.739670
0	-3.085106	-1.059623	0.450183
Н	-2.865493	-1.941872	0.774429
0	-2.276400	0.741254	-0.869567
Н	-1.394388	2.095824	-0.454106
0	1.436217	1.071538	-0.546266
S	2.062425	-0.121230	-0.018125
0	1.430569	-0.411659	1.363378
0	3.464214	-0.147069	0.107646
0	1.631953	-1.314038	-0.896762
Н	0.441628	-0.235114	1.346365
Н	0.638556	-1.367778	-0.946658
Ν	-0.632029	2.673580	-0.016382
Н	0.250976	2.122565	-0.163002
Н	-0.821004	2.7223060	0.981609
Н	-0.563769	3.600938	-0.421869

Table S24. Coordinates of $(ASP)_2 \cdot (A)$. Units are in angstrom.

Atom	Х	Y	Z
С	2.994303	-0.108468	-0.064946
Н	2.612481	0.147472	0.927622
Ν	2.622968	0.915382	-1.022990
Н	3.306872	0.938870	-1.771618
Н	1.713505	0.704301	-1.425032
С	4.503263	-0.171291	0.025989
0	5.254939	0.226598	-0.816738
0	4.916080	-0.768206	1.152887

Н	5.880315	-0.816311	1.120641
С	2.483536	-1.532575	-0.404609
Н	2.868739	-2.249466	0.315707
Н	2.800987	-1.790794	-1.413540
0	0.315010	-0.992208	-1.231544
С	0.976698	-1.490802	-0.347404
0	0.479667	-1.961950	0.771898
Н	-0.500185	-1.701912	0.834599
С	-2.266009	-0.033792	-0.021842
Н	-2.158261	-0.501730	-0.998729
Ν	-2.046666	-1.064259	0.991369
Н	-2.063604	-0.656751	1.920461
Н	-2.787294	-1.753808	0.922737
С	-1.198199	1.052766	0.033202
Ο	-1.155273	1.927298	-0.796588
Ο	-0.397386	0.967681	1.074784
Н	0.264977	1.751399	1.045562
С	-3.630344	0.651447	0.055309
Н	-3.693499	1.442507	-0.692185
Н	-3.779796	1.128219	1.027624
Ο	-4.665409	-1.491038	-0.329973
С	-4.768328	-0.305981	-0.167894
Ο	-5.954192	0.318932	-0.161102
Н	-6.636941	-0.348752	-0.308951
Ν	1.265552	2.981655	0.727251
Н	1.733276	3.562604	1.410613
Н	0.668718	3.568649	0.154010
Н	1.959726	2.561381	0.105256

Table S25. Coordinates of (SA)·(A)·(ASP). Units are in angstrom.

Iubic								
Atom	Х	Y	Ζ					
S	-1.830669	-1.084095	0.144751					
0	-1.415747	-0.500539	-1.143646					
0	-0.705572	-1.609397	0.877472					
0	-2.727329	-0.212671	0.856739					
Н	-0.251144	1.497551	1.785571					
0	-2.735405	-2.342390	-0.225271					
Н	-2.159194	-3.090307	-0.419932					
С	1.526556	1.005676	0.481525					
Н	2.356509	1.705445	0.601914					
Ν	1.249963	0.404724	1.777952					
Н	0.764835	-0.482912	1.664381					
Н	2.108885	0.250266	2.287247					
С	0.336846	1.868678	0.072270					

О	0.217401	2.391915	-1.009396
Ο	-0.572283	2.029338	1.018083
Н	-2.816545	1.753952	-0.104241
С	1.880162	0.029050	-0.633216
Н	1.929111	0.540050	-1.595491
Н	1.116650	-0.744858	-0.725890
Ο	3.952205	-0.330662	0.536397
С	3.211999	-0.613606	-0.365497
0	3.505348	-1.559278	-1.269009
Н	4.370403	-1.921734	-1.038198
Ν	-2.517746	1.840346	-1.079073
Н	-3.292183	2.089575	-1.682632
Н	-2.110731	0.863462	-1.294045
Н	-1.733751	2.500209	-1.148310

Table S26. Coordinates of (SA)₂·(ASP). Units are in angstrom.

Table 520. Coordinates of (SA) ₂ (ASI). Onits are in angstrom.						
Atom	Х	Y	Ζ			
S	-1.056346	1.971581	-0.074630			
0	-0.520796	3.203354	-0.591043			
0	-0.313964	0.803772	-0.582226			
0	-0.782192	1.986785	1.491241			
Н	0.039456	2.480557	1.639372			
0	-2.480191	1.774058	-0.175609			
Н	-3.113226	0.294318	0.126561			
S	-2.321298	-1.682370	-0.060067			
0	-2.917218	-2.943202	-0.255849			
0	-3.432146	-0.651693	0.210713			
0	-1.312588	-1.561491	0.972371			
Н	0.193742	-1.009166	1.035993			
0	-1.679747	-1.212931	-1.390493			
Н	-1.155979	-0.372261	-1.215102			
С	1.988712	-0.784531	-0.065782			
Н	1.303078	-0.789274	-0.907387			
Ν	1.190635	-0.682075	1.184204			
Н	1.622848	-1.267400	1.904648			
Н	1.142210	0.294010	1.499652			
С	2.745042	-2.099554	-0.007343			
0	2.866819	-2.742286	0.994935			
0	3.273146	-2.408857	-1.183117			
Н	3.755693	-3.243318	-1.100226			
С	2.997579	0.372725	-0.221028			
Н	3.463810	0.287469	-1.197909			
Н	3.754128	0.304732	0.560388			
0	1.919568	2.065099	1.033202			

С	2.277769	1.693317	-0.065220
0	2.047092	2.326846	-1.183635
Н	1.305231	2.960116	-1.047950

Х Y Ζ Atom S -0.212198 0.138469 -1.559220 0 -0.138982 -0.282597 0.403737 0 0.618788 -1.505314 -1.555312 0 1.099583 0.687639 -2.348397 Н 1.778600 -1.669419 1.100359 0 -1.112815 -2.450764 -0.126720 Н -1.875196 -1.916784 -0.585601 С -3.331469 -0.060967 0.068456 Η -2.712721 -0.313044 0.933005 Ν -2.820940-0.750484 -1.113553 Н -3.594103 -1.012202 -1.718300 Н -2.183325 -0.149785 -1.632160 С -4.741185 -0.546190 0.337395 0 -5.413498 -1.141358 -0.454098 0 -5.160543 -0.202756 1.557931 Η -6.067444 -0.519478 1.662182 С -3.356438 1.478177 -0.064548 Н -3.824353 1.910250 0.815648 Η -3.898402 1.757581 -0.966215 0 -1.334088 1.933512 -1.233305 С -1.930102 1.947710 -0.169424 0 -1.409643 2.295032 0.971855 Η -0.416987 2.391319 0.895885 С 3.267483 -0.002493 0.169896 Η 2.743462 -0.472110 -0.668201 Ν 2.658984 -0.418335 1.433963 Η 3.378459 -0.506465 2.145598 Η 1.958891 0.253778 1.738753 С 4.703266 -0.486034 0.149633 0 5.294896 -0.884666 1.111172 0 5.243718 -0.384804-1.066207 -0.695169 -1.013982 Η 6.157275 С 3.253593 1.523334 -0.062543 Η 3.762478 1.743517 -0.997697 Η 3.736185 2.032645 0.768992 0 1.210586 2.366702 0.826777С 1.815970 1.961225 -0.150968

Table S27. Coordinates of (SA)·(ASP)₂. Units are in angstrom.

0	1.299689	1.793884	-1.333682
Н	0.307136	1.898262	-1.311629

1.000			e in angenenn.
Atom	Х	Y	Z
Ν	-0.074138	0.403959	2.518114
Н	-0.957403	0.204028	2.002467
Н	0.627612	-0.283408	2.201850
Н	-0.221694	0.339982	3.519817
S	1.157167	1.966761	-0.155341
0	0.069159	1.006725	-0.314460
0	1.287722	2.458545	1.184816
Н	0.294059	1.330198	2.247465
0	2.384722	1.439379	-0.754793
S	-2.906526	-0.299651	-0.114058
0	-2.216603	-1.345407	-1.026709
0	-2.501825	1.061290	-0.729947
0	-4.299762	-0.439901	-0.256763
0	-2.315441	-0.400593	1.197068
Н	-1.292210	-1.541146	-0.750737
Н	-1.523294	1.195184	-0.622965
S	1.614715	-1.753279	-0.067360
0	2.473079	-3.062793	-0.056358
0	2.231827	-0.970417	-1.201227
0	0.270285	-2.139600	-0.372956
0	1.863285	-1.122153	1.190528
Н	2.148688	-3.682610	-0.723169
Н	2.319860	0.075481	-1.010756
0	0.794201	3.244587	-1.004282
Н	0.952443	3.075978	-1.941954

Table S28. Coordinates of (SA)₃·(A). Units are in angstrom.

Atom	X	Y	Z
С	-0.722585	2.106524	0.776877
Н	-1.359293	1.281710	1.095414
Ν	0.016430	2.592602	1.940261
Н	0.727526	3.253357	1.644293
Н	-0.606108	3.060103	2.587185
С	0.291820	1.543293	-0.210410
0	1.478241	1.768981	-0.083887
0	-0.250295	0.832108	-1.156182
Н	0.490472	0.347589	-1.703566
С	-1.599261	3.158184	0.070679
Н	-1.009044	3.814942	-0.564766
Н	-2.086439	3.762063	0.838745
0	-2.947842	2.811170	-1.898023
С	-2.708455	2.545505	-0.757906
0	-3.423546	1.691274	-0.017195
Н	-4.149323	1.278632	-0.524466
С	-3.725443	-1.366818	0.648149
Н	-3.474608	-0.421368	1.124679
Ν	-3.797578	-2.391371	1.672227
Н	-4.027650	-3.292750	1.271073
Н	-2.893144	-2.466037	2.121514
С	-5.059405	-1.159234	-0.033255
0	-5.378699	-0.147061	-0.606014
0	-5.841291	-2.237733	-0.016523
Н	-6.643766	-2.028556	-0.513149
С	-2.701471	-1.617543	-0.465127
Н	-2.739667	-0.824708	-1.218065
Н	-2.895314	-2.561311	-0.976398
0	-0.444720	-2.150332	-0.781607
С	-1.280114	-1.620165	0.044002
0	-0.976007	-1.127245	1.126318
Н	0.682277	-0.578159	1.657501
С	4.456486	-0.624244	0.151870
Н	4.224652	-1.608732	0.566868
Ν	3.893042	0.413008	1.014487
Н	4.628405	0.782282	1.609825
Н	3.554675	1.187109	0.448590

Table S29. Coordinates of (ASP)₃(A). Units are in angstrom.

С	5.969806	-0.527173	0.109952
0	6.622584	0.279483	0.710922
0	6.516625	-1.479263	-0.656966
Н	7.475623	-1.370405	-0.619720
С	3.861825	-0.565813	-1.250004
Н	4.307151	-1.339068	-1.875481
Н	4.064020	0.396930	-1.719786
0	1.708219	-0.324378	-2.204917
С	2.354065	-0.784802	-1.248277
0	1.868738	-1.424064	-0.271928
Н	0.545728	-1.884568	-0.540506
Ν	1.347563	-0.014817	2.220410
Н	1.442834	-0.439570	3.136996
Н	0.955247	0.946100	2.310010
Н	2.289867	0.038668	1.740230

Table S30. Coordinates of $(SA)_2 \cdot (A) \cdot (ASP)$. Units are in angstrom.

Atom	X	Y	<u>Z</u>		
S	1.400981	-1.920777	-0.413130		
0	0.834938	-3.213235	-0.733527		
0	0.490264	-0.821033	-0.735821		
0	1.585222	-1.883649	1.165991		
Н	0.730821	-2.131524	1.566378		
0	2.746642	-1.696202	-0.889189		
Н	3.507767	-0.503522	0.033962		
S	1.381214	2.349897	-0.063853		
0	2.239676	3.482965	-0.049875		
0	1.462983	1.493610	1.135016		
0	-0.027917	2.608691	-0.372765		
Н	-0.852959	1.604941	0.382182		
0	1.937778	1.441198	-1.237044		
Н	1.414525	0.609295	-1.262736		
С	-2.380377	0.233945	-0.088628		
Н	-1.903696	0.096794	-1.057996		
Ν	-1.359941	0.757619	0.839064		
Н	-1.782114	1.054438	1.718046		
Н	-0.624918	0.065212	1.012807		
С	-3.479575	1.274941	-0.172107		
0	-3.663303	2.099695	0.674170		
0	-4.230009	1.113832	-1.257130		
Н	-4.930876	1.780149	-1.246961		
С	-2.991795	-1.092742	0.397598		
Н	-3.739465	-1.414746	-0.321859		
Н	-3.444472	-0.950596	1.377987		

0	-1.139463	-2.110479	1.470128
С	-1.872807	-2.100402	0.500908
0	-1.740595	-2.843934	-0.560086
Н	-0.808382	-3.205403	-0.608322
Ν	3.766479	0.275499	0.685738
Н	4.318134	-0.077062	1.460453
Н	2.853851	0.716833	1.023730
Н	4.278478	0.991319	0.174894

	Table S31.	Coordinates	of	(SA)) · (\mathbf{A})•(ASP)2.	Units a	are in	angstrom.
--	------------	-------------	----	------	-------	--------------	-----	-----	-----	---------	--------	-----------

Atom	Х	Y	Ζ
S	0.466486	-1.664025	-1.347326
0	0.840584	-2.966455	-0.811135
0	0.255332	-0.691260	-0.280257
0	1.659141	-1.155985	-2.210786
Н	2.415163	-0.934445	-1.573957
0	-0.662420	-1.714451	-2.267778
Н	-1.900332	-0.993486	-1.608057
С	2.912579	0.980177	-0.024044
Н	1.987502	1.193397	-0.563502
Ν	3.285503	-0.413672	-0.230445
Н	4.296470	-0.503432	-0.215112
Н	2.889770	-0.991909	0.505700
С	4.006116	1.861409	-0.587517
0	5.120575	1.494185	-0.826317
0	3.595143	3.123475	-0.756837
Н	4.344987	3.633637	-1.089525
С	2.698850	1.365542	1.458078
Н	2.505085	2.432264	1.531702
Н	3.584502	1.096446	2.031431
0	1.631243	-0.556865	2.370226
С	1.512159	0.590562	1.976735
0	0.391949	1.247276	1.906815
Н	-0.411533	0.635084	2.065621
С	-2.503627	0.194887	0.055925
Н	-1.642247	0.822353	-0.155336
Ν	-2.795046	-0.610452	-1.158866
Н	-3.314923	-1.438499	-0.854140
Н	-3.311246	-0.052014	-1.840530
С	-2.145924	-0.786219	1.188915
0	-1.577974	-0.307273	2.190945
0	-2.490826	-1.967251	1.015935
Н	-0.987995	-2.675511	1.696664
С	-3.706672	1.023512	0.489532

Н	-3.450509	1.570270	1.394217
Н	-4.548347	0.371943	0.744774
0	-4.041736	1.834511	-1.750639
С	-4.193365	1.982052	-0.564924
0	-4.854562	3.016617	-0.048765
Н	-5.169134	3.566264	-0.779719
Ν	0.039050	-2.801548	1.778244
Н	0.267811	-3.542752	2.430118
Н	0.455308	-1.905193	2.090180
Н	0.407051	-3.004042	0.816692

Table S32. Coordinates of $(SA)_2 \cdot (A)_2$. Units are in angstrom.

Atom	Х	Y	Z
S	-2.046022	0.037836	-0.132939
0	-1.998061	1.453980	0.193118
0	-3.442196	-0.186985	-0.850278
0	-1.092613	-0.386094	-1.132718
О	-2.044028	-0.811632	1.046246
Н	-0.592046	2.195674	0.681064
Н	-4.150366	0.123114	-0.273117
S	2.129139	-0.075273	-0.203764
0	1.997404	-1.453253	-0.660918
Ο	1.294574	0.817481	-1.215729
Ο	1.414222	0.073599	1.088308
0	3.435399	0.485438	-0.212892
Н	0.817552	-2.109878	0.179257
Н	0.410300	0.400324	-1.347298
Ν	0.148807	-2.437668	0.943566
Н	-0.095772	-3.415310	0.829993
Н	0.636376	-2.290591	1.823564
Н	-0.711759	-1.840511	0.949632
Ν	0.382209	2.455188	0.968733
Н	0.383658	3.082179	1.764838
Н	0.872385	1.517336	1.174992
Н	0.865075	2.873727	0.177110

Table S33. Coordinates of $(ASP)_2 \cdot (A)_2$. Units are in angstrom.

Atom	Х	Y	Z
С	2.467264	-0.062632	0.171125
Н	1.813175	0.588140	0.755602
Ν	3.308276	-0.815319	1.084784
Н	3.781120	-1.564800	0.592951
Н	3.988093	-0.202436	1.516040
С	1.561933	-1.023068	-0.592675

0	0.720415	-0.403043	-1.384122
0	1.649631	-2.224056	-0.481553
Η	-0.684019	-2.961957	-1.789211
С	3.223410	0.803321	-0.841220
Η	2.530889	1.298368	-1.522315
Н	3.886582	0.192525	-1.458486
0	4.124079	2.061746	1.007657
С	4.054842	1.863678	-0.173913
0	4.738716	2.597317	-1.066032
Н	5.243984	3.256275	-0.572330
С	-2.467263	-0.062632	-0.171125
Н	-1.813174	0.588140	-0.755602
Ν	-3.308276	-0.815319	-1.084783
Н	-3.781120	-1.564800	-0.592950
Н	-3.988093	-0.202437	-1.516040
С	-1.561933	-1.023067	0.592675
0	-0.720414	-0.403042	1.384122
0	-1.649630	-2.224056	0.481554
Н	0.684019	-2.961956	1.789212
С	-3.223409	0.803322	0.841220
Н	-2.530888	1.298370	1.522313
Н	-3.886581	0.192526	1.458487
0	-4.124081	2.061744	-1.007658
С	-4.054842	1.863678	0.173913
0	-4.738717	2.597317	1.066031
Н	-5.243986	3.256273	0.572328
Ν	0.890987	-2.172011	2.391682
Н	0.838116	-2.472612	3.356118
Н	-0.106499	-1.098045	1.861840
Н	1.842543	-1.867651	2.176190
Ν	-0.890987	-2.172012	-2.391681
Н	0.106499	-1.098047	-1.861839
Н	-1.842543	-1.867653	-2.176190
Н	-0.838116	-2.472614	-3.356117

Table S34. Coordinates of $(SA) \cdot (A)_2 \cdot (ASP)$. Units are in angstrom.

			-
Atom	Х	Y	Ζ
S	-1.804066	-1.076729	-0.389109
0	-3.209279	-0.849213	-0.567305
0	-1.396720	-2.481097	-0.432317
0	-1.056459	-0.476783	-1.664057
Н	-1.038936	0.494351	-1.585200
0	-1.228307	-0.394799	0.763064
Н	-0.285609	-2.587439	2.355339

С	1.731670	0.206119	0.039290
Н	1.007568	-0.356976	-0.552800
Ν	1.582461	-0.143421	1.448120
Н	2.456913	0.034231	1.932394
Н	0.856212	0.441262	1.856071
С	3.111645	-0.213842	-0.416173
0	3.984526	-0.594477	0.312309
0	3.258187	-0.098094	-1.739702
Н	4.157998	-0.368495	-1.963933
С	1.534666	1.708360	-0.271198
Н	1.639283	1.871446	-1.340531
Н	2.282357	2.286505	0.270953
0	-0.052273	2.406035	1.362314
С	0.164433	2.146641	0.202482
0	-0.750453	2.175241	-0.747127
Н	-1.704851	2.230480	-0.298187
Ν	-3.019182	1.994496	0.455241
Н	-2.651543	1.811600	1.383798
Н	-3.451045	1.129789	0.131479
Н	-3.719964	2.721400	0.517258
Ν	0.320159	-2.609279	1.539802
Н	0.875565	-1.687263	1.522824
Н	-0.326321	-2.649871	0.678891
Н	0.935128	-3.414101	1.591418

Table S35. Coordinates of $(SA)_3 \cdot (A)_2$. Units are in angstrom.

Table 555. Coordinates of (5A)3 (A)2. Onits are in angstroni.					
Atom	X	Y	Z		
N	-0.000759	-2.032414	0.157616		
Н	-0.793117	-2.156394	-0.492713		
Н	0.918403	-1.943622	-0.317617		
Н	0.010093	-2.791360	0.831929		
Ν	-2.354751	1.899760	1.656060		
Н	-3.292294	2.180192	1.380256		
Н	-2.128090	2.261507	2.576750		
Н	-2.321300	0.857073	1.643426		
S	-3.068695	-0.820949	-0.131153		
0	-2.542076	-1.873978	-0.968841		
0	-2.976352	0.500950	-0.737607		
0	-2.549699	-0.826749	1.227763		
Н	-1.356863	0.631814	-1.386962		
S	0.290679	1.514282	-0.396409		
0	-0.373826	0.604941	-1.485441		
0	1.588157	1.846796	-0.914086		
0	-0.598745	2.642793	-0.186460		

О	0.359271	0.687931	0.827614
Н	-0.154188	-1.135816	0.642368
Н	-1.663657	2.259630	0.929587
0	-4.612441	-1.118389	0.067998
Н	-5.015769	-1.300875	-0.790194
S	3.465521	-0.696953	0.133606
0	3.889900	0.620830	-0.547337
0	2.746174	-0.241905	1.436137
0	4.627491	-1.401467	0.504448
0	2.484717	-1.340769	-0.704392
Н	3.081404	1.137344	-0.805758
Н	1.863307	0.179150	1.238126

Table S36.	Coordinates	of	(ASP) ₃	·(A))2.	Units	are in	angstrom.
------------	-------------	----	--------------------	------	-----	-------	--------	-----------

Atom	Х	Y	Z
С	-0.618865	1.863752	-0.123609
Н	-0.424603	0.855125	0.231354
Ν	-0.810562	1.787215	-1.599241
Н	-1.496668	2.509863	-1.842967
Н	0.097672	1.911914	-2.061791
С	-1.916655	2.415869	0.499556
Ο	-2.183421	2.041549	1.663338
Ο	-2.574014	3.199509	-0.204534
Н	-4.230176	2.541093	0.458028
С	0.534031	2.795769	0.241854
Н	0.619068	2.843065	1.324083
Н	0.315135	3.805119	-0.117354
0	2.875587	2.504600	0.433140
С	1.856316	2.369145	-0.363754
0	1.931378	1.952641	-1.508020
Н	5.245137	2.341490	-1.573659
С	-3.275857	-2.130433	-0.719439
Н	-4.357376	-2.005093	-0.705261
Ν	-2.923918	-3.216119	-1.611775
Н	-1.912867	-3.264662	-1.695049
Н	-3.234158	-4.100113	-1.226581
С	-2.696074	-0.815265	-1.241447
0	-3.331356	0.239868	-1.057437
0	-1.569135	-0.837167	-1.809872
Н	-1.195778	0.837600	-1.841046
С	-2.800659	-2.365215	0.745765
Н	-1.765025	-2.698464	0.724523
Н	-3.431170	-3.135860	1.184593
0	-3.985388	-0.651111	1.931506

С	-2.926035	-1.094696	1.539922
0	-1.774050	-0.470110	1.679377
Н	-1.925275	0.509213	1.883256
С	3.226101	-1.028801	0.153455
Н	2.643640	-0.142986	0.413489
Ν	3.611165	-0.913456	-1.239434
Η	4.107363	-1.739217	-1.553217
Н	2.783356	-0.782054	-1.807575
С	4.469061	-0.976571	1.021051
0	5.597576	-0.934135	0.620585
0	4.161492	-0.981296	2.326389
Н	4.988929	-0.938936	2.822511
С	2.388202	-2.264877	0.507715
Н	2.165539	-2.279956	1.575348
Н	2.927418	-3.184081	0.277651
0	0.397602	-3.323750	-0.294597
С	1.056552	-2.319484	-0.213236
0	0.690055	-1.152372	-0.713609
Н	-0.221639	-1.208516	-1.137787
Ν	5.020922	1.718041	-0.807555
Н	4.707117	0.823944	-1.199102
Н	3.763651	2.221871	-0.048706
Н	5.871165	1.532523	-0.288442
Ν	-4.761788	1.667294	0.607848
Н	-4.525393	1.275537	1.524915
Н	-4.371871	0.974389	-0.092670
Н	-5.761223	1.795385	0.505418

Table S37. Coordinates of $(SA)_2 \cdot (ASP)$. Units are in angstrom.

Atom	Х	Y	Z
S	-2.977224	-1.234550	-0.364414
0	-4.095697	-1.823708	-1.011959
О	-2.265280	-0.349963	-1.467229
0	-3.346235	-0.262402	0.698215
Н	-3.658614	1.183866	-0.029398
0	-1.960164	-2.140199	0.155955
Н	-0.453128	-2.222377	-0.368836
S	-0.165911	1.999558	0.274837
0	-1.106802	2.817323	-0.484001
0	-0.298642	2.167251	1.706711
Ο	-0.255393	0.578710	-0.109881
Н	-1.442962	0.043296	-1.059608

0	1.252442	2.458611	-0.123926
Н	1.728729	1.728904	-0.682380
С	3.041148	-0.252433	-0.177836
Н	2.742659	0.210925	0.766631
Ν	2.366006	0.412988	-1.288828
Н	2.996876	0.479056	-2.081896
Н	1.528367	-0.093540	-1.559834
С	4.535387	-0.051827	-0.334055
0	5.066344	0.323832	-1.338898
0	5.198937	-0.371684	0.780158
Н	6.141679	-0.242054	0.612601
С	2.746610	-1.761316	-0.073576
Н	3.367579	-2.190764	0.708751
Н	2.947317	-2.245265	-1.027550
0	0.504197	-2.204805	-0.672802
С	1.301862	-1.942697	0.329091
0	0.950068	-1.807233	1.481943
Н	-1.365866	-0.600418	3.435102
Ν	-1.191575	-0.352342	2.467741
Н	-0.510364	-1.010492	2.043203
Н	-0.805779	0.608044	2.383223
Н	-2.067963	-0.386281	1.911395
Ν	-3.612876	2.028247	-0.661960
Н	-3.775766	1.696706	-1.609838
Н	-2.617062	2.409590	-0.595884
Н	-4.296646	2.732180	-0.407152

Table S38. Coordinates of $(SA) \cdot (A)_2 \cdot (ASP)_2$. Units are in angstrom.

			<u> </u>
Atom	X	Y	Z
S	-3.509378	0.479305	-0.136532
0	-2.871898	1.787437	-0.090039
0	-4.855221	0.439212	-0.610660
0	-2.690976	-0.394601	-1.159623
Н	-4.236517	-2.241799	-0.867583
0	-3.331806	-0.208893	1.165566
Н	-1.868575	0.412453	1.795910
С	2.055481	-2.148711	-0.020529
Н	1.938396	-1.465708	0.820259
Ν	2.110825	-1.355887	-1.245320
Н	2.526483	-1.900918	-1.994205
Н	1.166862	-1.081419	-1.498581
С	3.371252	-2.876592	0.129173
0	4.148163	-3.071340	-0.761153
Ο	3.554965	-3.328252	1.377023

Н	4.391544	-3.811168	1.393542
С	0.924688	-3.180931	0.008546
Н	0.959170	-3.758188	0.932879
Н	1.031294	-3.893328	-0.811806
О	-1.419314	-3.362579	-0.179754
С	-0.465042	-2.561439	-0.095630
О	-0.553694	-1.306732	-0.097747
Н	-1.830962	-0.728589	-0.736445
С	2.561815	3.067320	0.298608
Н	2.350291	3.307063	1.338617
Ν	3.902863	3.495110	-0.040246
Н	4.163019	3.154796	-0.958086
Н	3.969430	4.504762	-0.043984
С	2.431117	1.560987	0.163131
О	1.701917	0.914165	0.889484
О	3.095209	1.058853	-0.843374
Н	2.807671	0.083101	-0.996098
С	1.447089	3.699499	-0.573408
Н	1.612808	3.463400	-1.622235
Н	1.486059	4.779673	-0.434860
О	-0.316632	3.397057	1.002709
С	0.087474	3.220180	-0.129366
О	-0.571873	2.559575	-1.050573
Н	-1.473063	2.276130	-0.718815
Ν	-3.891842	-2.653651	-0.001357
Н	-3.899994	-1.891391	0.699036
Н	-2.833662	-2.948167	-0.123908
Н	-4.476403	-3.431268	0.282805
Ν	-0.907960	0.813931	1.889196
Н	-0.284472	0.326182	1.233783
Н	-0.530619	0.706521	2.824883
Н	-0.909881	1.819359	1.635478