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Figure S1: left, energy deposition upon collision with 0.5 He2+ ions with three basis sets. Right, charge 
variations with respect to the ground state of U (green), S (red), P (orange) and solvation shell (blue) upon 
irradiation by 0.5MeV He2+. Charge variations are calculated taking the ground state electron density as 
reference and using the Hirshfeld partition scheme to define atoms in molecules. BS1: DZVP-GGA on all 
atoms and aug-cc-pVDZ on oxygen water atoms (plain lines). BS2: TZVP on all atoms and aug-cc-pVDZ on 
oxygen water atoms (dashed lines). BS3: cc-pVQZ on all atoms and aug-cc-pVDZ on oxygen water atoms 
(plain lines).



Figure S2: QM/MMpol potential energy variation of the molecular system upon irradiation by 0.1 MeV He2+ 
ion (left) or 50 eV electron (right), with respect to the ground state. Color code: CU1 trajectories in yellow, 
CU2 trajectories in red, trajectories CS in blue, trajectories CP in green and trajectories CW in violet. 





Figure S3: repetitions of RT-TD-ADFT electron dynamics simulations upon collision with 0.1 MeV He2+ 
(conditions CU1 and CU2, see main text) for eleven geometries of solvated USP extracted from Born-
Oppenheimer MD simulations. Each color corresponds to different molecular moieties (U in green, S in red, 
P in dark orange, the water shell in blue). The black curves correspond to the averages. 



Charge migrations after sudden ionization approximation

We start by analyzing results obtained with the first protocol consisting of depopulating Kohn-

Sham MO from the SCF solution. The selected localized MOs are depicted on Figure S4. 

Simulations A, B, C and D, are respectively analogous to the CU1, CU2, CS and CP 

trajectories described above. In simulation A, we partially depopulate two  MO from the uracil 

base, imposing a population number of 1.5 each (we work with the restricted Kohn-Sham 

formalism, i.e. all other MOs have occupation numbers of 2.0 at the end of the SCF). In 

simulation B, C and D, we depopulate a  bonding MOs of the uracil C2-N3 bond, of the ribose 

C4’-O4’ or of phosphate P-O5’ bond respectively (see Figure 1 in the main text for atoms 

labelling). 

The charge evolution of the U, S and P groups and of the water solvation shell are shown in 

Figure S5, taking the ground state charges (i.e. before ionization) as reference. In simulation 

A, as expected, the charge on U is close to 1.0 at time zero. It rapidly decays to 0.6 within a 

few tens of attoseconds and then decays almost constantly to reach a value of 0.3 at 1.5 fs. 

Conversely the electric charge on sugar increases. This indicates a delocalization of the hole 

over the entire U+S subsystem, as already described above. Nonetheless, the total charge on 

U and S (green-red dashed line) globally decays over a few femtoseconds at the expense of 

a charge increase of the solvation layer. The charge on the phosphate group, on the other 

hand, only marginally increases. We obtain similar trends with simulation B, except that the 

total U+S charge remains rather constant at 0.8 after 0.25 fs. This is probably a result of a 

weaker coupling between the depopulated MOs lying on the U+S moieties and MOs lying on 

the solvation water as compared to simulation A. In simulation C, the hole is produced on the 

sugar group at time zero. However, as in simulations A and B, it rapidly delocalizes over the 

solvation layer within 200 as, and, on a femtosecond time scale, over the entire U+S system. 

We find again that no hole displacement toward the phosphate group. In simulation D the hole 

is localized on the phosphate group. The hole delocalizes over the water layer within less than 

100 as, and also over the U+S parts of the USP molecule. 



Figure S4: Set of localized MOs selected to be depopulated at the beginning of RT-TD-ADFT simulations A 
to D. For each simulation, the numbers in brackets indicate the population numbers of depopulated MO at 
time zero. For clarity, only atoms pertaining to the QM region are shown, the remaining solvent molecules 
are described by the POL3 model. 

Figure S5: Charge variations with respect to the ground state of U (green), S (red), P (orange) and solvation 
shell (blue) after sudden depopulations of selected Kohn-Sham orbitals. Charge variations are calculated 
taking the ground state electron density as reference and using the Hirshfeld partition scheme to define 
atoms in molecules. The green dashed lines correspond for each simulation to the sum of the charge 
variations of U and S. The four graphs correspond to RT-TD-ADFT simulations after depopulations of the 
MOs depicted on Figure S4.  



Marcus free energy profiles

Technical details on BOMD simulations with cDFT/MM

We refer the reader to the deMon2k manual in case of doubts about the technical terms used 

in the following paragraphs: 

http://www.demon-software.com/public_html/support/htmlug/index.html

Born-Oppenheimer Molecular Dynamics simulations were carried in three steps. First, we 

generated MD trajectories on the resting state (i.e. before radiolysis) for 40 ps. We used the 

DZVP-GGA atomic basis set combined to the automatically generated GEN-A2 auxiliary basis. 

We chose the PBE functional to evaluate exchange-correlation effects by numerical integration 

over a grid 10-5 Ha accuracy (this value refers to the accuracy on the diagonal elements of the 

XC potential matrix). MD simulations in the NVT ensemble was achieved using a Berendsen 

thermostat with a system-bath coupling of 0.1ps and a temperature of 300 K. We used a 

velocity Verlet propagator to evolve the nuclear degrees of freedom with a timestep of 1 fs. To 

prevent diffusion of water molecules within the polarizable continuum (see Figure 1), all atoms 

situated between 30 and 33 Å away from the center of mass of the USP molecule were 

restrained to their initial positions by application of harmonic potentials with a force constant of 

100 kJ/Å2. 

In a second step, we switched to a cDFT/MM methodology to carry out BOMD on charge 

transfer states. We switched to the BH&HLYP functional using a grid of fine accuracy (10-7 

Ha). This choice of functional was motivated by the better convergence properties of 

BH&HLYP compared to GGA functionals. We defined charge constraints according to the 

Hirshfeld partitioning scheme. The cDFT weight matrix elements were obtained by numerical 

integration over a fixed grid of fine accuracy. The Lagrange multipliers were updated at every 

Self-Consistent-Field iteration with a convergence of 10-4 e-. cDFT/MM MD simulations were 

conducted for 5ps, saving geometries every 10 fs, for each of the two diabatic states. 

In the third step, we reprocessed all the cDFT/MM MD trajectories to evaluate the vertical 

energy gap and the electronic coupling between the cDFT/MMpol diabatic states. The 

reprocessing step was carried out with the polarizable POL3 water model. To alleviate the risk 

of too frequent SCF convergence issues, we followed a strategy which is common in the 

literature and that consist in first carrying our SCF without updating MM induced dipoles, while 

optimizing induced dipoles at convergence with the Hirschfeld charges on QM atoms. This 

approach misses a fraction of the induction energy steming from the interplay between QM 

region polarization and MM region polarization, but it is expected to capture most of induction 

energy. When reprocessing the trajectories at the cDFT/MMpol level, the SCF sometimes 

http://www.demon-software.com/public_html/support/htmlug/index.html


failed to converge (4% of all single point calculations). In these cases, the snapshots were 

discarded.

Building free energy curves

The Marcus free energy curves for the initial and final electron states,  and  respectively, 𝑎𝑖 𝑎𝑓

are calculated by a Landau formula:

𝑎𝑥(𝜀) =‒ 𝛽𝑙𝑛(𝑝𝑥(𝜀)) + 𝐴0
𝑥

where  is the reaction coordinate which is taken to be the vertical potential energy gap 𝜀

between the diabatic state;  is the probability for the vertical energy gap to have a value 𝑝𝑥(𝜀)

of  when the system samples molecular conformations of state .  is the absolute free 𝜀 𝑥 𝐴0
𝑥

energy of the system in the electronic state . We have used the rstudio program to build all 𝑥

free energy curves. The scripts for the R package are provided in Supplementary materials 

together with the data provided by deMon2k. Briefly, we first constructed the probability 

histogram of the diabatic energy gaps, discarding bins containing less than two elements. The 

bin size was set to 0.01 eV. Each sample contained initially 4,900 snapshots. The free energy 

was calculated from these distributions. We then operated a linear fit to parabolic curve, 

assigning larger weights to the bins containing larger number of points. The fitting was carried 

out for each diabatic states considering both the data points coming directly from the simulation 

of state i, and from the application of the rule that  for ergodic systems. ∆𝐴 = ∆𝜀

Figure S6: Fluctuations of the diabatic energy gaps calculated at the cDFT/MMpol/Onsager level of 
calculation along MD simulations conducted on the potential energy surfaces for the (US)+P2- and (US)P- 
charge transfer states (in red and green respectively). 



Figure S7: Radial distribution functions illustrating the reorganization of solvent around the USP molecule. 
The red and green curves correspond to the (US)+P2- and to the (US)P- diabatic states respectively. Plain 
curves correspond to the radial distribution functions and dashed lines correspond to the integrated RDF. 
The RDF were computed gathering snapshots over the last 3ps of all cDFT/MD simulations. Top-left: RDF 
of water oxygen molecules around the phosphate. Top-right: RDF of water hydrogen atoms around O2 and 
O4 oxygen atoms of the nucleobase. Bottom-left: RDF of oxygen water atoms around N3 nitrogen atom of 
the nucleobase. Bottom-right: water oxygen atoms 





Figure S8: Marcus free energy curves for the electron transfer involving the (US)+P2- and (UP)P- diabatic 
states (initial and final states, shown in red and green, respectively). The curves have been obtained by a 
linear fit to a parabola, considering all the data points from 100fs to 5 ps, and considering the system to bi 
ergodic. 

Figure S9: Electronic coupling calculated with the BH&HLYP XC functional along cDFT/MM MD simulations 
on the potential energy surfaces of the (US)+P2- and to the (US)P- diabatic states (in red and green 
repectively). Left: time series of electronic coupling. Right: probability distribution. 

 



Figure S10: vertical gap (left) and electronic coupling (right) variations upon nuclear relaxation of the 
system on the (US)+P potential energy surface (i.e. subsequent to ionization). The black curve corresponds 
to the average over the 21 replicas. The PBE50 functional is used (raw data are available in SI for other 
functionals).

Calculation of statistical uncertainties

Reaction free energy and Stokes reorganization energy

Each quantity is evaluated for each run (11 in total) from the average vertical energy gap 

sampled from on the potential energy surface of the initial and final redox states. Knowledge 

of each contribution is associated to various sources of uncertainties, namely the choice of the 

energy function (DFT XC functional, basis set, QM/MM technique,); of the computation 

protocol or of the sampling method. We have evaluated from statistical uncertainties due to 

the sampling method. 

For a pair of QM/MM MD trajectories in electronic states i and f, the uncertainties of  and ∆𝐴°

 are computed using propagation uncertainty formula, from the variance of the mean vertical 𝜆𝑆𝑡

energy gaps  and along the two trajectories:〈Δ𝐸〉𝑖 〈Δ𝐸〉𝑓 

𝑢2(∆𝐴°) = 𝑢2(𝜆𝑆𝑡 ) =
1
4(𝑢2(〈Δ𝐸〉𝑖) + 𝑢2(〈Δ𝐸〉𝑓))

The variance of the mean energy gaps is obtained from the dispersion of the energy gap along 

the simulation:

𝑢2(〈Δ𝐸〉𝑥) =
𝑣𝑎𝑟(Δ𝐸)𝑥

𝜌𝑥𝑁𝑥

Where  and  are the number of points sampled along the simulation  and the chain 𝑁𝑥 𝜌𝑥 𝑥

efficiency of the MD simulation. The latter quantity has been obtained from the energy gap 



auto-correlation function using the effectiveSize procedure of the coda package of the R 

software. This leads to:

𝑢2(∆𝐴°) = 𝑢2(𝜆𝑆𝑡 ) =
1
4(𝑣𝑎𝑟(Δ𝐸)𝑖

𝜌𝑖𝑁𝑖
+

𝑣𝑎𝑟(Δ𝐸)𝑓

𝜌𝑓𝑁𝑓
)

Variance reorganization energy

For each simulation (in electronic states i and f), we have computed the reorganization energy 

from the variance of the energy gap , according Eq. 5 of the main text:Δ𝐸

𝜆𝑣𝑎𝑟
𝑥 =

𝛽.𝑣𝑎𝑟(Δ𝐸)𝑥

2

Uncertainty on each individual value is estimated through𝜆𝑣𝑎𝑟
𝑥  

𝑢2(𝜆𝑣𝑎𝑟
𝑥 ) =

𝛽2

4

2(𝑣𝑎𝑟(Δ𝐸)𝑥)2

𝜌𝑥𝑁𝑥

Electron transfer characteristic times

The characteristic ET times in the context of the non-adiabatic Marcus (NAM) Theory have 

been evaluated as the inverse of the non-adiabatic rate constant:

 
𝜏𝑁𝐴𝑀

𝐸𝑇 =
ℏ 4𝜋 𝛽

2𝜋
.

𝜆𝑆𝑡exp (𝛽Δ𝐴 ≠ )
〈𝐻 2

𝐷𝐴〉

Propagations of the statistical uncertainties on each of the  ,  and  to the evaluation Δ𝐴 ≠ 〈𝐻 2
𝐷𝐴〉 𝜆𝑆𝑡

of  have been estimated from uncertainty propagation formulas. If a function  depends on 𝜏𝐸𝑇 𝑦

three parameters,  and ( ) associated to uncertainties ,  and , then 𝑎,𝑏 𝑐 𝑦 = 𝑓(𝑎,𝑏,𝑐) 𝑢2(𝑎)  𝑢2(𝑏) 𝑢2(𝑐)

the maximal uncertainty on  is given by:𝑦

𝑢2(𝑎) = |∂𝑦
∂𝑎|𝑢2(𝑎) + |∂𝑦

∂𝑏|𝑢2(𝑏) + |∂𝑦
∂𝑐|𝑢2(𝑐)

Therefore, in the case of we find:𝜏𝑁𝐴𝑀
𝐸𝑇

𝑢2(𝜏𝑁𝐴𝑀
𝐸𝑇 ) = 𝐶[ 𝜆𝑆𝑡

〈𝐻 2
𝐷𝐴〉2

𝑢2(〈𝐻 2
𝐷𝐴〉) +

1

2〈𝐻 2
𝐷𝐴〉 𝜆𝑆𝑡

𝑢2(𝜆𝑆𝑡) +
𝜆𝑆𝑡𝛽

〈𝐻 2
𝐷𝐴〉

𝑢2(Δ𝐴 ≠ )]



with , 
𝐶 =

ℏ 4𝜋 𝛽
2𝜋

.exp (𝛽Δ𝐴 ≠ )

, 
𝑢2(〈𝐻 2

𝐷𝐴〉) =
𝑣𝑎𝑟(𝐻 2

𝐷𝐴)

𝜌𝑁

and  being also obtained from the uncertainty propagation formula, as follow.𝑢2(Δ𝐴 ≠ )

Δ𝐴 ≠ =
(∆𝐴° + 𝜆𝑆𝑡)2

4𝜆𝑆𝑡
‒ 〈𝐻𝐷𝐴〉1

𝑢2(Δ𝐴 ≠ ) =
(∆𝐴° + 𝜆𝑆𝑡)

4𝜆𝑆𝑡
𝑢2(∆𝐴°) +

8(∆𝐴° + 𝜆𝑆𝑡)𝜆𝑆𝑡 ‒ 4(∆𝐴° + 𝜆𝑆𝑡)2

16(𝜆𝑆𝑡)2
𝑢2(𝜆𝑆𝑡) +

𝑣𝑎𝑟(𝐻𝐷𝐴)

𝜌𝑁

ET transfers time from mean first passage

Technical details on BOMD simulations 

We extracted 21 snapshots with a 2 ps time interval from the initial BOMD simulation on the 

resting state, before switching to cDFT/MM to simulate nuclear relaxation on the (US)+P 

potential energy surface. We used a 0.5 fs time step to have better time resolution of MD 

trajectory. MD simulations were carried out for a maximum 200 fs on the initial diabatic states. 

The vertical energy gap between the two diabatic states was evaluated in a second step with 

the POL3 water model using the procedure described above. 

As it turned out that the hopping probability at the crossing point was very sensitive to the 

choice of XC functional, all the simulations (trajectory generation and reprocessing) were 

repeated with the following functionals: BH&HLYP, PBE50 (i.e. PBE0 with 50% of exact 

exchange), M06-2X, HSE06. 

Characteristic decoherence times

Characteristic decoherence times have been evaluated from the difference in forces exerted 

on atom nuclei between the two charge transfer states . The sum runs 
𝜏𝑑𝑒𝑐 = [〈∑

𝑛

(𝐹𝑛,𝑖 ‒ 𝐹𝑛,𝑓)2

2𝑎𝑛ℏ 〉𝑇]
over all atom nuclei, and enable to make a separation between atom pertaining to the USP 

molecule, and those pertaining to solvent. Results are compiled in Sable S1



The parameters  are nuclear wave packet widths that we be borrowed from Ref except for 𝑎𝑛

phosphorous that was not considered in this work and that we have substituted here by a high 

temperature estimate ( ,  being the atomic mass of phosphorous).𝑎𝑃 = 6𝑀𝑃 𝛽ℏ2 𝑀𝑃

Table S1: Characteristic decoherence times (in fs) for the superposition of the (US)+P and (US)P+ diabatic 
states. The separation into an USP and solvent contribution is enabled with Eq. 6 (see main text).

𝜏 𝑎𝑙𝑙
𝑑𝑒𝑐 𝜏𝑈𝑆𝑃

𝑑𝑒𝑐 𝜏𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝑑𝑒𝑐

BH&HLYP 0.61 0.86 0.86

PBE50 0.60 0.85 0.84

M06-2X 0.64 0.94 0.87

HSE06 0.74 1.24 0.93


