Electronic Supporting Information

Intrinsic enhancement of the rate capability and suppression of the phase transition via p-type doping in Fe-Mn based P2-type cathodes used for sodium ion batteries

Taesoon Hwang[‡], Jin-Myoung Lim^{‡a,b}, Rye-Gyeong Oh^c, Woosuk Cho^c, Maenghyo Cho^{*a} and Kyeongjae Cho^{*d}

^a Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. E-mail: <u>mhcho@snu.ac.kr</u>.

^b Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

^c Advanced Batteries Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam 13509, Republic of Korea.

^{*d*} Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA. E-mail: <u>kjcho@utdallas.edu</u>.

^{*†*} These authors contributed equally.

Fig. S1 TDOS of (a) P2-NaFe_{0.5}Mn_{0.5}O₂, (b) P2-NaCu_{0.125}Fe_{0.375}Mn_{0.5}O₂, (c) P2-Fe_{0.5}Mn_{0.5}O₂, and (d) P2-Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂ with HSE06 hybrid functional (dotted line indicates the Fermi level).

Fig. S2 (a, b)Atomic structures and (c)Average net charges of Mn in P2-NaMnO₂ and P2-MnO₂.

Fig. S3 Calculated electrochemical potential with respect to the inverse Na content *x* in P2-Na_{1-x}Fe_{0.5}Mn_{0.5}O₂ (black) and P2-Na_{1-x}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂ (red).

Fig. S4 Migration barrier from P2 to OP2.

Fig. S5 Migration barrier from OP2 to Z.

Fig. S6 (a-c) PDOS for (a)Ni, (b)Fe, (c)Mn and CFSDs of (d)Cu, (e)Fe, (f)Mn in NNiFMO. (Solid arrow : fully filled state, shaded arrow : partially filled state)

Fig. S7 STEM images of (a, b) P2-Na_{0.67}Fe_{0.5}Mn_{0.5}O₂ and (c, d) P2-Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂.

Fig. S8 Elemental distributions of Na (red), Fe (yellow), Mn (purple), O (cyan) and Cu (green) for (a) P2-Na_{0.67}Fe_{0.5}Mn_{0.5}O₂ and (b) P2-Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂ measured by HRTEM with EDS analysis.

Fig. S9 Cycle performance of P2-Na_{0.67}Fe_{0.5}Mn_{0.5}O₂ (black) and P2-Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂ (red) at 100 mA g⁻¹ in the range of 1.5 to 4.3 V vs. Na/Na⁺.

Fig. S10 Electrochemical impedance spectroscopy profiles of P2-Na_{0.67}Fe_{0.5}Mn_{0.5}O₂ (black) and P2-Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂ (red) at the OCV(Open circuit voltage) states.

		P2 phase	Z phase by Fe migration	Z phase by Mn migration	Z phase by Cu migration	Z phase by Ni migration
NFMO	Fe	1.99	1.92	1.95		
	Mn	2.11	2.11	1.78		
NCuFMO	Fe	2.03	1.93	2.03	2.03	
	Mn	2.10	2.12	1.84	2.11	
	Cu	1.28	1.28	1.29	1.29	
NNiFMO	Fe	2.03	1.93	2.03		2.03
	Mn	2.10	2.11	1.79		2.12
	Ni	1.42	1.49	1.44		1.36

Table. S1 Net charges of transition metal elements according to various migration states in NFMO, NCuFMO and NNiFMO.

Table. S2 *a* and *c* lattice parameters calculated by both XRD and DFT calculation of P2-Na_{0.67}Fe_{0.5}Mn_{0.5}O₂ and P2-Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O₂.

		<i>a</i> (Å)	<i>c</i> (Å)
XRD	P2-Na _{0.67} Fe _{0.5} Mn _{0.5} O ₂	2.917	11.294
	$P2\text{-}Na_{0.67}Cu_{0.125}Fe_{0.375}Mn_{0.5}O_2$	2.918	11.223
DFT calculation	$P2-Na_{0.63}Fe_{0.5}Mn_{0.5}O_2$	2.987	11.231
	$P2-Na_{0.63}Cu_{0.125}Fe_{0.375}Mn_{0.5}O_2$	2.96	11.225