## Supporting Information

Quantum calculations of photoelectron spectra of the $\mathbf{O H}^{-} \cdot \mathbf{N H}_{3}$ anion: Implications for $\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathbf{H}_{2} \mathbf{O}+\mathrm{NH}_{2}$ reaction dynamics

Kohei Saito, Yutaro Sugiura, Takaaki Miyazaki, Yukinobu Takahashi, Toshiyuki Takayanagi*

Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan


$$
\begin{aligned}
& Z_{1}=R\left(\mathrm{~N}_{2}-\mathrm{H}_{1}\right) \\
& Z_{2}=R\left(\mathrm{H}_{3}-\mathrm{N}_{2}\right) \quad Z_{6}=\theta\left(\mathrm{H}_{3}-\mathrm{N}_{2}-\mathrm{H}_{1}\right) \\
& Z_{3}=R\left(\mathrm{O}_{4}-\mathrm{N}_{2}\right) \quad Z_{7}=\theta\left(\mathrm{O}_{4}-\mathrm{N}_{2}-\mathrm{H}_{1}\right) Z_{10}=\phi\left(\mathrm{H}_{4}-\mathrm{N}_{2}-\mathrm{H}_{1}-\mathrm{H}_{3}\right) \\
& Z_{4}=R\left(\mathrm{H}_{5}-\mathrm{N}_{2}\right) \quad Z_{8}=\theta\left(\mathrm{H}_{5}-\mathrm{N}_{2}-\mathrm{H}_{1}\right) Z_{11}=\phi\left(\mathrm{H}_{5}-\mathrm{N}_{2}-\mathrm{H}_{1}-\mathrm{H}_{3}\right) \\
& Z_{5}=R\left(\mathrm{H}_{6}-\mathrm{O}_{4}\right) \quad Z_{9}=\theta\left(\mathrm{H}_{6}-\mathrm{O}_{4}-\mathrm{N}_{2}\right) \quad s=\phi\left(\mathrm{H}_{6}-\mathrm{O}_{4}-\mathrm{N}_{2}-\mathrm{H}_{1}\right)
\end{aligned}
$$

Figure S1 Definition of internal coordinates used in the anionic potential energy surface construction.


Figure S2 Time-dependence of the 12 normal mode coordinates along the 100 RPMD trajectories calculated at $T=300 \mathrm{~K}$.

(d) Mode 4 (A") $v_{4}=540 \mathrm{~cm}^{-1}$

(I) Mode 12 ( $\left.A^{\prime}\right)$
$v_{12}=3810 \mathrm{~cm}^{-1}$





Figure S3 Normal-mode coordinates obtained from vibrational frequency analysis of the transition-state structure (with anti-configuration) for the $\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2}$ reaction on the PES-2012 potential energy surface. Mode 1 corresponds to the vibrational mode with an imaginary frequency.


Figure S4 Three-dimensional perspective plot of the nuclear probability distribution functions of the $\mathrm{OH}^{-} \cdot \mathrm{NH}_{3}$ anion calculated from the PIMD simulations at $T=200 \mathrm{~K}$ on the interpolated potential energy surface. In this plot, the nitrogen atom is fixed to the coordinate origin and the oxygen atom is always placed on the X -axis. In addition, the midpoint of the two hydrogen atoms (bonding to N ) is placed on the $\mathrm{X}-\mathrm{Y}$ plane.

Ground state


Figure $\mathbf{S 5}$ Time evolution of the wave packet density for the $\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2}$ reaction system plotted as a function of $Q_{a}$ and $Q_{b}$. The wave packet density was integrated over the $Q_{c}$ and $Q_{d}$ coordinates. Left and right panels show the wave packet evolutions for the (0000) and (1000) initial anionic states, respectively.


Figure S6 Time evolution of the wave packet density for the $\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2}$ reaction system plotted as a function of $Q_{a}$ and $Q_{d}$. The wave packet density was integrated over the $Q_{b}$ and $Q_{c}$ coordinates. Left and right panels show the wave packet evolutions for the (0000) and (1000) initial anionic states, respectively.

