Supporting Information

Quantum calculations of photoelectron spectra of the $OH^{-}\cdot NH_3$ anion: Implications for $OH + NH_3 \rightarrow H_2O + NH_2$ reaction dynamics

Kohei Saito, Yutaro Sugiura, Takaaki Miyazaki, Yukinobu Takahashi, Toshiyuki Takayanagi*

Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan

Figure S1 Definition of internal coordinates used in the anionic potential energy surface construction.

Figure S2 Time-dependence of the 12 normal mode coordinates along the 100 RPMD trajectories calculated at T = 300 K.

Figure S3 Normal-mode coordinates obtained from vibrational frequency analysis of the transition-state structure (with anti-configuration) for the $OH + NH_3 \rightarrow H_2O + NH_2$ reaction on the PES-2012 potential energy surface. Mode 1 corresponds to the vibrational mode with an imaginary frequency.

Figure S4 Three-dimensional perspective plot of the nuclear probability distribution functions of the $OH^{-} \cdot NH_3$ anion calculated from the PIMD simulations at T = 200 K on the interpolated potential energy surface. In this plot, the nitrogen atom is fixed to the coordinate origin and the oxygen atom is always placed on the X-axis. In addition, the midpoint of the two hydrogen atoms (bonding to N) is placed on the X-Y plane.

Figure S5 Time evolution of the wave packet density for the $OH + NH_3 \rightarrow H_2O + NH_2$ reaction system plotted as a function of Q_a and Q_b . The wave packet density was integrated over the Q_c and Q_d coordinates. Left and right panels show the wave packet evolutions for the (0000) and (1000) initial anionic states, respectively.

Figure S6 Time evolution of the wave packet density for the $OH + NH_3 \rightarrow H_2O + NH_2$ reaction system plotted as a function of Q_a and Q_d . The wave packet density was integrated over the Q_b and Q_c coordinates. Left and right panels show the wave packet evolutions for the (0000) and (1000) initial anionic states, respectively.